Under the mentor effect, compatible heterospecific pollen transfer induces self-pollen germination in otherwise self-incompatible plants. The mentor effect could be considered a novel mode of reproductive interference if it negatively impacts fitness. Yet to date, this phenomenon has predominately been investigated under experimental conditions rather than in situ. We address this gap in natural populations of the self-incompatible native dandelion, Taraxacum ceratophorum, where selfing only occurs in association with hybridization from exotic Taraxacum officinale. We tested whether self-fertilization rate increases in the hybrid zone, as predicted due to the mentor effect. Using results from these investigations, we created an exponential growth model to estimate the potential demographic impacts of the mentor effect on T. ceratophorum population growth. Our results demonstrate that the strength of the mentor effect in Taraxacum depends on the prevalence of pollinator-mediated outcross pollen deposition rather than self-pollination. Demographic models suggest that reduced outcrossing in T. ceratophorum under exotic invasion could negatively impact population growth through inbreeding depression. We demonstrate the mentor effect is rare in natural populations of T. ceratophorum due to masking by early life cycle inbreeding depression, prevalent outcrossing, and ovule usurpation by heterospecific pollen.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.18629 | DOI Listing |
Bull Entomol Res
December 2024
Ladybird Research Laboratory, Department of Zoology, University of Lucknow, Uttar Pradesh, Lucknow 226007, India.
Understanding why animals choose one food over another is one of the key questions underlying the fields of behaviour ecology. This study aims to test if ladybird beetle, Mulsant (Coleoptera: Coccinellidae) can forage selectively for nutrients in order to redress specific nutritional imbalances to maximise their fitness. We hypothesised that the presence of more food choices leads to bad decisions in terms of their food selection which ultimately negatively affects the mating and reproductive parameters of .
View Article and Find Full Text PDFAm J Bot
December 2024
Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, F-21000, France.
Premise: Restoration of seminatural field margins can elevate pollinator activity. However, how they support wild plant gene flow through interactions between pollinators and spatiotemporal gradients in floral resources remains largely unknown.
Methods: Using a farm-scale experiment, we tested how mating outcomes (expected heterozygosity and paternity correlation) of the wild, self-incompatible plant Cyanus segetum transplanted into field margins (sown wildflower or grass-legume strips) were affected by the abundance of different pollinator functional groups (defined by species traits).
PLoS One
November 2024
Dept of Environmental Conservation, University of Massachusetts, Amherst, MA, United States of America.
Cities are complex socioecological systems, yet most urban ecology research does not include the influence of social processes on ecological outcomes. Much of the research that does address social processes focuses primarily on their effects on biotic community composition, with less attention paid to how social processes affect species interactions. Linking social processes to ecological outcomes is complicated by high spatial heterogeneity in cities and the potential for scale mismatch between social and ecological processes, and the indicators used to assess those processes.
View Article and Find Full Text PDFThe mechanisms underlying plant species distribution and abundance have been long studied in ecology. However, the role of heterospecific pollen interference in shaping these patterns needs more attention. Species distribution and abundance are important factors determining whether a species is endangered or not; thus, understanding the impact of heterospecific pollen interference on rare species could help to inform conservation strategies aimed at preserving plant communities.
View Article and Find Full Text PDFEvolution
December 2024
Department of Organismic and Evolutionary Biology & Arnold Arboretum, Harvard University, Cambridge, MA 02138, United States.
Characterizing the mechanisms of reproductive isolation between lineages is key to determining how new species are formed and maintained. In flowering plants, interactions between the reproductive organs of the flower-the pollen and the pistil-serve as the last barrier to reproduction before fertilization. As such, these pollen-pistil interactions are both complex and important for determining a suitable mate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!