Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Hartree-Fock (HF) and Density Functional Theory (DFT) studies were conducted to assess the impact of potassium doping on the thermodynamic, optoelectronic, electronic and nonlinear optical properties and on the reactivity of photochromic polymers containing styrylquinoline fragments. Doping was carried out on the virgin monomer (M1) and on the derivative monomer (M2) with the nitro group NO. Three doped monomers were investigated including, the monomer M3 obtained from M1 by substituting the H atom with a potassium, the monomer M4 by substituting two H atoms and the monomer M5 obtained from M2 by substituting the H atom. Findings proved that the use of potassium and the nitro group is an excellent process to improve the electronics properties of styrylquinoline virgin monomers. In fact, the energy gap decreases from 3.82 eV for M1 to 3.02 eV and to 2.92 eV for M3 and M4, respectively; while the decrease from 3.43 eV for M2 to 2.52 eV for M5 was observed, thus demonstrating the good semiconductor character of the obtained compounds with relevant applications in the manufacture of solar cells. Likewise, the fundamental gap decreases from 6.50 eV for M1 to 5.34 eV and to 4.62 eV for M3 and M4, respectively; while the decrease from 6.11 eV for M2 to 5.21 eV for M5 was observed; thus demonstrating an improvement in the reactivity of our doped monomers. In addition, potassium doping is an appropriate method to enhance optoelectronic properties of styrylquinoline virgin monomers. Thus, the refractive index of our doped monomers is greater than that of glass, which is a reference in optic and can be used under high electric fields of the order of Vm for monomer M4 up to Vm for M3 and to Vm for M5. Finally, the strong enhancement of the linear and nonlinear optical (NLO) properties that we observed leads us to conclude that these doped monomers can be appropriate candidates in devices requiring good NLO properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9674889 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2022.e11491 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!