Rapid growth in the aquaculture industry and corresponding increases in nutrient and organic carbon levels in coastal regions can lead to eutrophication and increased greenhouse gas emissions. Macroalgae are the organisms primarily responsible for the capture of CO and removal of nutrients from coastal waters. In the current study, we developed a novel wastewater treatment system in which the red macroalga, Sarcordia suae, is used to capture CO under thermostatic conditions in subtropical regions. In 2020 (without temperature control), the carbon capture rate (CCR) of Sarcordia suae varied considerably with the season: winter/spring (2.1-3.9 g-C m d) and summer (0.09 g-C m d). In 2021, solar powered cooling reduced summer seawater temperatures from 31 to 33 °C to 23-25 °C with a corresponding increase in the mean CCR: winter/spring (2-7 g-C m d) and summer (1.33 g-C m d). The proposed aquaculture wastewater system proved highly efficient in removing nitrogen (20.7 mg-N g DW d, DW = dry weight) and phosphorus (4.4 mg-P g DW d). Furthermore, the high density of Sarcodia (1.10 ± 0.03 g cm) would permit the harvesting and subsequent dumping of Sarcodia in deep off-shore waters. This study demonstrated a low-cost land-based seaweed cultivation system for capturing CO and excess nutrients from aquaculture wastewater year-round under temperature controlled environments in subtropical regions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.158850 | DOI Listing |
J Environ Manage
January 2025
Wuxi Fisheries College, Nanjing Agricultural University, 214081, Wuxi, PR China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, PR China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, 214081, Wuxi, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, 100000, Beijing, PR China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, PR China. Electronic address:
The presence of residual antibiotics in water constitutes a potential threat to aquatic environments. Therefore, designing environmentally friendly and efficient biochar adsorbents is crucial. Aquaculture by-product moss (bryophyte) was transformed into biochar, which can eliminate antibiotics from wastewater through adsorption.
View Article and Find Full Text PDFImeta
December 2024
Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen Chinese Academy of Agricultural Sciences Shenzhen China.
The Conference 2024 provides a platform to promote the development of an innovative scientific research ecosystem for microbiome and One Health. The four key components - Technology, Research (Biology), Academic journals, and Social media - form a synergistic ecosystem. Advanced technologies drive biological research, which generates novel insights that are disseminated through academic journals.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2024
National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China.
In the study, Sargassum horneri (S. horneri) was used to create a novel zeolite-like algal biochar (KSBC). KSBC with doping of N, O, S, Al, and Si, displayed zeolite-like properties, including well-developed porosity, a high specific surface area (1137.
View Article and Find Full Text PDFEnviron Pollut
December 2024
College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, State Key Laboratory of Nutrient Use and Management, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing, 100193, China. Electronic address:
Poor management of nitrogen (N) can lead to serious environmental problems, such as air and water pollution. The accurate identification of priority control areas and emission sources is critical for making effective decisions regarding sustainable N management. This study aimed to identify hotspots for N losses and quantitatively analyze the relative contributions of different emission sources in the Huang-Huai-Hai Basin at the county scale.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
With the development of industry, agriculture, and aquaculture, excessive ammonia nitrogen mainly involving ionic ammonia (NH) and molecular ammonia (NH) has inevitable access to the aquatic environment, posing a severe threat to water safety. Photocatalytic technology shows great advantages for ammonia nitrogen removal, such as its efficiency, reusability, low cost, and environmental friendliness. In this study, CP (g-CN/CoP) composite materials, which exhibited high-efficiency ammonia nitrogen removal, were synthesized through a simple self-assembly method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!