Microplastic pollution in various ecosystems has gained significant attention across the globe. Due to ubiquitous abundance, terrestrial and aquatic ecosystems at regional scales are polluted via uncontrolled anthropogenic actions. Therefore, this study investigates microplastic pollution and distribution in sediments and surface water of the Moheshkhali channel of Bangladesh, Bay of Bengal, along with their shape, size, color, and polymeric analysis. It has been observed that both sediments and surface water are significantly contaminated with microplastics at 14 sediments and 12 surface water sampling sites. 291 particles of microplastic were observed in two quadrants, separated 10-m away from each other, across 14 sediment sampling sites, with average concentrations registered in the range of 6.66 to 138.33 particles/m. At the same time, 163 particles were observed across 12 sampling sites in the surface water, ranging from 0 to ~0.1 particles/m. Various shapes, like films, fragments, fiber/lines, foams, and pellets (resins), were observed extensively in the Moheshkhali channel. Besides, various risk assessments, like contamination factors, polymeric risk assessment, pollution risk index, and pollution load index, were analyzed for each sampling site across the channel. Pollution load index (PLI) of shore sediments and surface water were 2.51 and 1.67, respectively, indicating significant pollution in the Moheshkhali channel. This research investigation provides insight into anthropogenic activities and baseline microplastic pollution in the Moheshkhali channel of Bangladesh, which helps to prepare robust strategies for conservation and management to deal with such environmental issues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.158892 | DOI Listing |
Chem Sci
December 2024
Advanced Technology Research Institute (Jinan), Beijing Institute of Technology Jinan 250300 China
Elastomers are of great significance in developing smart materials for information encryption, and their unique self-healing and highly flexible properties provide innovative solutions to enhance security and anti-counterfeiting effectiveness. However, challenges remain in the multifunctional combination of mechanical properties, self-healing, degradability, and luminescence of these materials. Herein, a chemodynamic covalent adaptable network (CCAN)-induced robust, self-healing, and degradable fluorescent elastomer is proposed.
View Article and Find Full Text PDFChem Sci
December 2024
State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
The altered solvation structures and dynamical properties of water molecules at the metal/water interfaces will affect the elementary step of an electrochemical process. Simulating the interfacial structure and dynamics with a realistic representation will provide us with a solid foundation to make a connection with experimental studies. To surmount the accuracy-efficiency tradeoff and provide dynamical insights, we use state-of-the-art machine learning molecular dynamics (MLMD) to study the water exchange dynamics, which are fundamental to adsorption/desorption and electrochemical reaction steps.
View Article and Find Full Text PDFActa Crystallogr E Crystallogr Commun
January 2025
A novel coordination compound, [Co()(HO)], was synthesized from aqueous solutions of Co(NO) and the ligand 2-[(5-methyl-1,3,4-thia-diazol-2-yl)sulfan-yl]acetic acid (H, CHNOS). In the monoclinic crystals (space group 2/), the cobalt(II) ion is located about a centre of symmetry and is octa-hedrally coordinated by two anions in a monodentate fashion through carboxyl O atoms and by four water mol-ecules. A relatively strong hydrogen bond between one of the water mol-ecules and the non-coordinating carboxyl-ate O atom consolidates the conformation.
View Article and Find Full Text PDFJ Fluoresc
January 2025
The Key Laboratory for Surface Engineering and Remanufacturing in Shaanxi Province, Key Laboratory of Chemistry of New Material of Functional Inorganic Composites, School of Chemical Engineering, Xi'an University, Xi'an, Shaanxi, China.
Methylene blue (MB) contamination has become a significant environmental issue due to its widespread presence in industrial effluents, posing serious threats to ecosystems and human health. As a result, there is an urgent need for the development of novel adsorbent materials that can effectively remove these pollutants from water sources. In this context, the present study focuses on the design and synthesis of two coordination polymers (CPs) containing Zn(II) and Mn(II), namely, {[Mn(L)(tib)]·4HO} (1) and [Zn(L)(3,5-bibp)] (2), using a combined-ligand approach under solvothermal conditions.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, China.
Coastal wetlands contain very large carbon (C) stocks-termed as blue C-and their management has emerged as a promising nature-based solution for climate adaptation and mitigation. The interactions among sources, pools, and molecular compositions of soil organic C (SOC) within blue C ecosystems (BCEs) remain elusive. Here, we explore these interactions along an 18,000 km long coastal line of salt marshes, mangroves, and seagrasses in China.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!