Computational Investigation of Ligand Binding of Flavonoids in Cytochrome P450 Receptors.

Curr Pharm Des

School of Animal, Rural and Environmental Sciences, Nottingham Trent University, 50 Shakespeare St, Nottingham NG1 4FQ,UK.

Published: January 2023

Aim: The cytochrome P450 enzymes play a significant role in regulating cellular and physiological processes by activating endogenous compounds. They also play an essential role in the detoxification process of xenobiotics. Flavonoids belong to a class of polyphenols found in food, such as vegetables, red wine, beer, and fruits, which modulate biological functions in the body.

Methods: The inhibition of CYP1A1 and CYP1B1 using nutritional sources has been reported as a strategy for cancer prevention. This study investigated the interactions of selected flavonoids binding to the cytochrome P450 enzymes (CYP1A1 and CYP1B1) and their ADMET properties in silico. From docking studies, our findings showed flavonoids, isorhamnetin and pedalitin, to have the strongest binding energies in the crystal structures 6DWM and 6IQ5.

Results: The amino acid residues Asp 313 and Phe 224 in 6DWM interacted with all the ligands investigated, and Ala 330 in 6IQ5 interacted with all the ligands examined. The ligands did not violate any drug-likeness parameters.

Conclusion: These data suggest roles for isorhamnetin and pedalitin as potential precursors for natural product- derived therapies.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1381612829666221121151713DOI Listing

Publication Analysis

Top Keywords

cytochrome p450
12
p450 enzymes
8
cyp1a1 cyp1b1
8
isorhamnetin pedalitin
8
interacted ligands
8
computational investigation
4
investigation ligand
4
ligand binding
4
flavonoids
4
binding flavonoids
4

Similar Publications

Clinical Manifestations.

Alzheimers Dement

December 2024

Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.

Background: Accumulating evidence has shown the neuroprotective effects of estrogen on cognition function, for example delaying the cognitive deterioration in patients with Alzheimer's disease (AD). However, the clinical usage of estrogen in AD remains controversial. The cytochrome P450 aromatase encoded by CYP19A1, is a key enzyme catalyzing the C19 androgen conversion to C18 estrogen, which induces testosterone to estradiol and androstenedione to estrone.

View Article and Find Full Text PDF

Amino acid substrate specificities and tissue expression profiles of the nine CYP79A encoding genes in Sorghum bicolor.

Physiol Plant

January 2025

Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Copenhagen, Denmark.

Cytochrome P450s of the CYP79 family catalyze two N-hydroxylation reactions, converting a selected number of amino acids into the corresponding oximes. The sorghum genome (Sorghum bicolor) harbours nine CYP79A encoding genes, and here sequence comparisons of the CYP79As along with their substrate recognition sites (SRSs) are provided. The substrate specificity of previously uncharacterized CYP79As was investigated by transient expression in Nicotiana benthamiana and subsequent transformation of the oximes formed into the corresponding stable oxime glucosides catalyzed by endogenous UDPG-glucosyltransferases (UGTs).

View Article and Find Full Text PDF

Evaluation of machine learning algorithms and computational structural validation of CYP2D6 in predicting the therapeutic response to tamoxifen in breast cancer.

Eur Rev Med Pharmacol Sci

December 2024

Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain.

Objective: CYP2D6 plays a critical role in metabolizing tamoxifen into its active metabolite, endoxifen, which is crucial for its therapeutic effect in estrogen receptor-positive breast cancer. Single nucleotide polymorphisms (SNPs) in the CYP2D6 gene can affect enzyme activity and thus impact tamoxifen efficacy. This study aimed to use machine learning algorithms (MLAs) to identify significant predictors of Breast Cancer-Free Interval (BCFI) and to apply bioinformatics tools to investigate the structural and functional implications of CYP2D6 SNPs.

View Article and Find Full Text PDF

Proteomic characterization of molecular mechanisms of paraquat-induced lung injury in a mouse model.

Respir Res

January 2025

Emergency Department, The First Hospital of China Medical University, No.155 North Nanjing Street, Heping District, Shenyang, Liaoning, 110001, China.

Background: We sought to explore the molecular mechanisms underpinning acute lung injury (ALI) caused by poisoning with paraquat (PQ).

Methods: Selection mice were intraperitoneally injected with PQ at 40 mg/kg, whereas controls were injected with sterile saline. On days 2, 7, and 14 after administration, mice were anesthetized and sacrificed, and lung tissue was removed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!