A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An imConvNet-based deep learning model for Chinese medical named entity recognition. | LitMetric

An imConvNet-based deep learning model for Chinese medical named entity recognition.

BMC Med Inform Decis Mak

Key Laboratory of Advanced Manufacturing Technology, Ministry of Education, Guizhou University, Guiyang, 550025, Guizhou, China.

Published: November 2022

Background: With the development of current medical technology, information management becomes perfect in the medical field. Medical big data analysis is based on a large amount of medical and health data stored in the electronic medical system, such as electronic medical records and medical reports. How to fully exploit the resources of information included in these medical data has always been the subject of research by many scholars. The basis for text mining is named entity recognition (NER), which has its particularities in the medical field, where issues such as inadequate text resources and a large number of professional domain terms continue to face significant challenges in medical NER.

Methods: We improved the convolutional neural network model (imConvNet) to obtain additional text features. Concurrently, we continue to use the classical Bert pre-training model and BiLSTM model for named entity recognition. We use imConvNet model to extract additional word vector features and improve named entity recognition accuracy. The proposed model, named BERT-imConvNet-BiLSTM-CRF, is composed of four layers: BERT embedding layer-getting word embedding vector; imConvNet layer-capturing the context feature of each character; BiLSTM (Bidirectional Long Short-Term Memory) layer-capturing the long-distance dependencies; CRF (Conditional Random Field) layer-labeling characters based on their features and transfer rules.

Results: The average F1 score on the public medical data set yidu-s4k reached 91.38% when combined with the classical model; when real electronic medical record text in impacted wisdom teeth is used as the experimental object, the model's F1 score is 93.89%. They all show better results than classical models.

Conclusions: The suggested novel model (imConvNet) significantly improves the recognition accuracy of Chinese medical named entities and applies to various medical corpora.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9677659PMC
http://dx.doi.org/10.1186/s12911-022-02049-4DOI Listing

Publication Analysis

Top Keywords

named entity
16
entity recognition
16
medical
15
electronic medical
12
model
8
chinese medical
8
medical named
8
medical field
8
medical data
8
model imconvnet
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!