Multifunctional Thermally Conductive Composite Films Based on Fungal Tree-like Heterostructured Silver Nanowires@Boron Nitride Nanosheets and Aramid Nanofibers.

Angew Chem Int Ed Engl

Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China.

Published: January 2023

Thermal conduction for electronic equipment has grown in importance in light of the burgeoning of 5G communication. It is imperatively desired to design highly thermally conductive fillers and polymer composite films with prominent Joule heating characteristics and extensive mechanical properties. In this work, "solvothermal & in situ growth" method is carried out to prepare "Fungal tree"-like hetero-structured silver nanowires@boron nitride nanosheet (AgNWs@BNNS) thermally conductive fillers. The thermally conductive AgNWs@BNNS/ANF composite films are obtained by the method of "suction filtration self-assembly and hot-pressing". When the mass fraction of AgNWs@BNNS is 50 wt%, AgNWs@BNNS/ANF composite film presents the optimal thermal conductivity coefficient of 9.44 W/(m ⋅ K) and excellent tensile strength of 136.6 MPa, good temperature-voltage response characteristics, superior electrical stability and reliability, which promise a wide application potential in 5G electronic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202216093DOI Listing

Publication Analysis

Top Keywords

thermally conductive
16
composite films
12
silver nanowires@boron
8
nanowires@boron nitride
8
conductive fillers
8
agnws@bnns/anf composite
8
multifunctional thermally
4
conductive
4
composite
4
conductive composite
4

Similar Publications

Effect of uniaxial bending methods on the flexural strength and Weibull analysis of heat-polymerized, CAD/CAM milled, and 3D-printed denture base resins.

Dent Mater

January 2025

Department of Oral Technology, Medical Faculty, University Hospital Bonn, Bonn, North Rhine-Westphalia, Germany; Department of Fixed Prosthodontics, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt.

Objectives: To compare the flexural strength and modulus of denture base resins manufactured by conventional methods, 3-dimensional (3D) printing, and computer-aided design and computer-aided manufacturing (CAD/CAM) milling using 3-point bending (3PB) and 4-point bending (4PB) methods after simulated aging.

Methods: Ninety bars (64 ×10 ×3.3 mm) were prepared from heat-polymerized (Lucitone-199), CAD/CAM milled (G-CAM), and 3D-printed (Denturetec) denture base resins (n = 30 per material).

View Article and Find Full Text PDF

Clozapine boosting N/Cl co-doped carbon skeleton synergistically optimizing NaV(PO) with superior performance and excellent thermal stability.

J Colloid Interface Sci

January 2025

Institute of Advanced Energy Materials and Systems, North University of China, Taiyuan 030051, Shanxi, PR China; School of Materials Science and Engineering, North University of China, Taiyuan 030051, Shanxi, PR China. Electronic address:

Nowadays, the limited electronic conductivity and structural deterioration during battery cycling have hindered the widespread application of NaV(PO) (NVP). In response to these challenges, we advocate for a technique involving the application of carbon modifications to NVP to enhance its suitability as cathode material. This work involves the synthesis of N/Cl co-modified in situ carbon coatings derived from clozapine (CZP) through a facile hydrothermal route.

View Article and Find Full Text PDF

Acting as the interface between the human body and its environment, clothing is indispensable in human thermoregulation and even survival under extreme environmental conditions. Development of clothing textiles with prolonged passive temperature-adaptive thermoregulation without external energy consumption is much needed for protection from thermal stress and energy saving, but very challenging. Here, a temperature-adaptive thermoregulation filament (TATF) consisting of thermoresponsive vacuum cavities formed by the temperature-responsive volume change of the material confined in the cellular cores of the filament is proposed.

View Article and Find Full Text PDF

Extremely low lattice thermal conductivity in light-element solid materials.

Natl Sci Rev

January 2025

Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.

Lattice thermal conductivity ( ) is of great importance in basic sciences and in energy conversion applications. However, low- crystalline materials have only been obtained from heavy elements, which typically exhibit poor stability and possible toxicity. Thus, low- materials composed of light elements should be explored.

View Article and Find Full Text PDF

Introduction: The non-thermal plasma (NTP) technique has been suggested as a sustainable horticultural practice to promote biomass accumulation, nutrient uptake, N metabolism, and disease prevention in plants. In particular, the potentiality of this technique to promote the natural accumulation of nutrients into plants deserve to be explored as input saving is strongly recommended in the horticultural sector.

Methods: The nutrient solution supplied to a red coloured variety of rocket salad [ (L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!