Background: Long-term levodopa use is frequently associated with fluctuations in motor response and can have a serious adverse effect on the quality of life (QoL) of patients with Parkinson's disease (PD). Deep brain stimulation (DBS) is effective in improving symptoms of diminished levodopa responsiveness. QoL improvements with DBS have been shown in several randomized control trials, mostly in Europe and the United States; however, there is a need for evidence from regions around the world.

Objective: The study aimed to demonstrate improvement in PD-related QoL in patients undergoing DBS in a prospective, multicenter study conducted in China.

Materials And Methods: To evaluate the effect of neurostimulation on the QoL of patients with PD, a Parkinson's Disease Questionnaire (PDQ-8); Unified Parkinson's Disease Rating Scale (UPDRS) I, II, III, and IV; and EuroQol 5-dimension questionnaire (EQ-5D) were administered at baseline and 12 months after DBS implantation. The mean change and percent change from baseline were reported for these clinical outcomes.

Results: Assessments were completed for 85 of the 89 implanted patients. DBS substantially improved patients' QoL and function. Implanted patients showed statistically significant mean improvement in PDQ-8 and UPDRS III (on stimulation/off medication). In the patients who completed the 12-month follow-up visit, the percent change was -22.2% for PDQ-8 and -51.6% for UPDRS III (on stimulation/off medication). Percent change from baseline to 12 months for UPDRS I, II, III, and IV and EQ-5D were -16.8%, -39.4%, -18.5%, and -50.0% and 22.7%, respectively. The overall rate of incidence for adverse events was low at 15.7%. Favorable outcomes were also reported based on patient opinion; 95.3% were satisfied with DBS results.

Conclusions: These data were comparable to other studies around the world and showed alignment with the ability of DBS to meaningfully improve the QoL of patients with PD. More studies investigating DBS therapy for patients with PD are necessary to accurately characterize clinical outcomes for the global PD population.

Clinical Trial Registration: The ClinicalTrials.gov registration number for this study is NCT02937688.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neurom.2022.10.047DOI Listing

Publication Analysis

Top Keywords

parkinson's disease
16
qol patients
16
updrs iii
16
patients parkinson's
12
percent change
12
patients
9
quality life
8
deep brain
8
brain stimulation
8
dbs
8

Similar Publications

Fluctuation-related pain (FRP) affects more than one third of people with Parkinson's disease (PwP, PD) and has a harmful effect on health-related quality of life (HRQoL), but often remains under-reported by patients and neglected by clinicians. The National Institute for Health and Care Excellence (NICE) recommends The Parkinson KinetiGraphTM (the PKGTM) for remote monitoring of motor symptoms. We investigated potential links between the PKGTM-obtained parameters and clinical rating scores for FRP in PwP in an exploratory, cross-sectional analysis of two prospective studies: "The Non-motor International Longitudinal, Real-Life Study in PD-NILS" and "An observational-based registry of baseline PKG™ in PD-PKGReg".

View Article and Find Full Text PDF

Background And Objectives: Surgical planning is critical to achieve optimal outcome in deep brain stimulation (DBS). The relationship between clinical outcomes and DBS electrode position relative to subthalamic nucleus (STN) is well investigated, but the role of surgical trajectory remains unclear. We sought to determine whether preoperatively planned DBS lead trajectory relates to adequate motor outcome in STN-DBS for Parkinson's disease (PD).

View Article and Find Full Text PDF

Neuroinflammation and mitochondrial dysfunction are early events in Alzheimer's disease (AD) and contribute to neurodegeneration and cognitive impairment. Evidence suggests that the inflammatory axis mediated by macrophage migration inhibitory factor (MIF) binding to its receptor, CD74, plays an important role in many central nervous system (CNS) disorders such as AD. Our group has developed DRhQ, a novel CD74 binding construct which competitively inhibits MIF binding, blocks macrophage activation and migration into the CNS, enhances anti-inflammatory microglia cell numbers and reduces pro-inflammatory gene expression.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a complex progressive neurodegenerative disorder and the pathogenesis and treatment methods are unknown. This aim is to investigate the effects of long non coding RNA NEAT1 (LncRNA NEAT1) on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD). Immunoprecipitation and western blot were used to search for the effects of LncRNA NEAT1 on PD.

View Article and Find Full Text PDF

We previously identified a role for dAuxilin (dAux), the fly homolog of Cyclin G-associated kinase, in glial autophagy contributing to Parkinson's disease (PD). To further dissect the mechanism, we present evidence here that lack of glial dAux enhanced the phosphorylation of the autophagy-related protein Atg9 at two newly identified threonine residues, T62 and T69. The enhanced Atg9 phosphorylation in the absence of dAux promotes autophagosome formation and Atg9 trafficking to the autophagosomes in glia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!