Deriving RNA topological structure from SAXS.

Methods Enzymol

Protein-Nucleic Acid Interaction Section, Center for Structural Biology, National Cancer Institute, National Institutes of Health, Frederick, MD, United States. Electronic address:

Published: November 2022

Structures of well-folded RNA molecules can be determined with atomic resolution by either X-ray crystallography, cryo-EM, or NMR spectroscopy, but those of conformationally-flexible RNAs often are difficult to study with these methods. However, flexible RNAs have biological relevance and likely represent the majority of the RNA conformational space. Due to the high electron density of the phosphate-sugar backbone, RNA is very sensitive to small-angle X-ray scattering (SAXS), and SAXS data can be recorded with sub-μM concentrations and under near-physiological solution conditions without the need for labeling. For these reasons, SAXS has significant advantages over other techniques for obtaining global structural information of flexible RNAs in the form of molecular envelopes or low-resolution topological structural models. The SAXS-derived information is extremely valuable for bridging secondary structure data, often determined by other techniques, with a three-dimensional structure description. In this chapter, we present a detailed account of the principle, algorithms, and experimental and computational protocols for topological structure determination of RNA molecules in solution. To illustrate the applications of the methodology, we provide several case studies that cover a broad spectrum of the RNA conformational landscape.

Download full-text PDF

Source
http://dx.doi.org/10.1016/bs.mie.2022.08.037DOI Listing

Publication Analysis

Top Keywords

topological structure
8
rna molecules
8
flexible rnas
8
rna conformational
8
rna
5
deriving rna
4
rna topological
4
structure
4
saxs
4
structure saxs
4

Similar Publications

Rigidity Aspects of Penrose's Singularity Theorem.

Commun Math Phys

January 2025

Copenhagen Centre for Geometry and Topology (GeoTop), Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark.

In this paper, we study rigidity aspects of Penrose's singularity theorem. Specifically, we aim to answer the following question: if a spacetime satisfies the hypotheses of Penrose's singularity theorem except with weakly trapped surfaces instead of trapped surfaces, then what can be said about the global spacetime structure if the spacetime is null geodesically complete? In this setting, we show that we obtain a foliation of MOTS which generate totally geodesic null hypersurfaces. Depending on our starting assumptions, we obtain either local or global rigidity results.

View Article and Find Full Text PDF

A Bioinspired Virus-Like Mechano-Bactericidal Nanomotor for Ocular Multidrug-Resistant Bacterial Infection Treatment.

Adv Mater

January 2025

Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, P. R. China.

Multidrug-resistant (MDR) bacteria and their associated biofilms are major causative factors in eye infections, often resulting in blindness and presenting considerable global health challenges. Presently, mechano-bactericidal systems, which combine distinct topological geometries with mechanical forces to physically induce bacterial apoptosis, show promising potential. However, the physical interaction process between current mechano-bactericidal systems and bacteria is generally based on passive diffusion or Brownian motion and lacks the force required for biofilm penetration; thus, featuring low antibacterial efficacy.

View Article and Find Full Text PDF

Spin-orbit coupling (SOC) induced nontrivial bandgap and complex Fermi surface has been considered to be profitable for thermoelectrics, which, however, is generally appreciable only in heavy elements, thereby detrimental to practical application. In this study, the SOC-driven extraordinary thermoelectric performance in a light 2D material Fe₂S₂ is demonstrated via first-principles calculations. The abnormally strong SOC, induced by electron correlation through 3d orbitals polarization, significantly renormalizes the band structures, which opens the bandgap via Fe 3d orbitals inversion, exposes the second conduction valley with weak electron-phonon coupling, and aligns the energy of Fe 3d and S 3p orbitals with divergent momentum in valence band.

View Article and Find Full Text PDF

Resolving and routing magnetic polymorphs in a 2D layered antiferromagnet.

Nat Mater

January 2025

State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (MOE), and Department of Physics, Fudan University, Shanghai, China.

Polymorphism, commonly denoting diverse molecular or crystal structures, is crucial in the natural sciences. In van der Waals antiferromagnets, a new type of magnetic polymorphism arises, presenting multiple layer-selective magnetic structures with identical total magnetization. However, resolving and manipulating such magnetic polymorphs remain challenging.

View Article and Find Full Text PDF

Structural variations (SVs) play important roles in genetic diversity, evolution, and carcinogenesis and are, as such, important for human health. However, it remains unclear how spatial proximity of double-strand breaks (DSBs) affects the formation of SVs. To investigate if spatial proximity between two DSBs affects DNA repair, we used data from 3C experiments (Hi-C, ChIA-PET, and ChIP-seq) to identify highly interacting loci on six different chromosomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!