The electrochemical aptamer-based (E-AB) biosensor usually has a long reaction time when detecting thrombin. This work reports the design of an E-AB biosensor with dual recognition sites to quickly detect thrombin. Specifically, two specific recognition sites of thrombin were used to design three aptamer sequences (TBA-15, TBA-29 and TBA-U), followed by fabrication of corresponding sensors. First, we tested these three types of biosensors in tris buffer solution, and found that the response time of the TBA-U sensor to the same concentration of thrombin was about 2 hours, which is shorter than TBA-15 and TBA-29 sensors. Then, we also did the same test in 50 % diluted serum with 500 nM thrombin. The response time of the TBA-U sensor was about 2 hours, which is still faster than the 3 hours of TBA-15 sensor and the 5.5 hours for TBA-29 sensor. In addition, in terms of dynamic range and specificity, TBA-U has good performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cplu.202200325 | DOI Listing |
ACS Sens
December 2024
Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea.
Sensors (Basel)
November 2024
Department of Chemistry & Biochemistry, Metropolitan State University of Denver, Denver, CO 80204, USA.
Carrion's disease, caused by infection with the bacterium (), is effectively treated with antibiotics, but reaches fatality rates of ~90% if untreated. Current diagnostic methods are limited, insufficiently sensitive, or require laboratory technology unavailable in endemic areas. Electrochemical aptamer-based (E-AB) biosensors provide a potential solution for this unmet need, as these biosensors are portable, sensitive, and can rapidly report the detection of small molecule targets.
View Article and Find Full Text PDFTalanta
March 2025
School of Henan Industry and Trade Vocational College, Zhengzhou, Henan Province, 451191, China. Electronic address:
Acute myocardial infarction (AMI) is one of the top contributors to global disease mortality. AMI biomarkers, such as cardiac troponin I (cTnI), are often detected with enzyme-linked immunosorbent assay (ELISA) that suffers from several well-known drawbacks such as poor stability and slow and cumbersome operation. Therefore, it is necessary to develop a new analytical technique that can rapidly analyse and detect cTnI for early screening of AMI.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350116, China; Department of Anesthesiology, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China. Electronic address:
Imatinib (Ima), as a commonly used anticancer drug for the clinical treatment of leukemia and gastrointestinal mesenchymal stromal tumour, requires timely monitoring of patients' blood concentration to ensure efficacy while reducing complications and achieving precision medicine due to its narrow therapeutic window (1-5 μM) and the varying sensitivity and resistance of different patients to Ima. However, traditional assays are slow and cumbersome, so improved and innovative platforms for monitoring Ima in the clinic are necessary. In this work, a nanoporous electrochemical aptamer-based (E-AB) sensor was designed for the detection of Ima and imatinib mesylate (Ima-Mes) in blood.
View Article and Find Full Text PDFBiosensors (Basel)
September 2024
School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!