Chitosan, chondroitin sulfate, and hyaluronic acid based in-situ forming scaffold for efficient cell grafting.

Int J Biol Macromol

Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Vidya Vihar, Rajasthan 333031, India. Electronic address:

Published: January 2023

AI Article Synopsis

Article Abstract

Current cell grafting techniques are majorly dependent on seeding cells on a pre-formed scaffold. However, cells grow in a 2-dimensional (2D) space in such constructs, not mimicking the tissue's 3-dimensional (3D) architecture. The present study evaluated a unique poly-electrolyte complexation (PEC) based strategy for the 3D engraftment of cells in a porous polymeric scaffold. The scaffold was synthesized using a positively charged polysaccharide chitosan (CH) and negatively charged glycosaminoglycans chondroitin sulfate (CS) and hyaluronic acid (HA). Two different scaffolds were synthesized, one using CH and CS [CH-CS] and another using CH and CS + HA [CH-(CS-HA)]. The physicochemical characterization of both the PECs confirmed electrostatic interactions, leading to a porous and viscoelastic PEC formation. Fibroblast cells were grafted and seeded in both scaffolds to evaluate the effect of different scaffold compositions and the difference between seeded and grafted cells. Imaging studies confirmed that grafting of the fibroblast cells supports cellular proliferation. The qPCR studies demonstrated increased expression of functional markers TGF-β, α-SMA, collagen-I, and fibronectin in the CH-(CS-HA) grafted cells. In summary, it was demonstrated that an in-situ forming PEC of CH, CS, and HA had good physicochemical properties for cell grafting and supported grafted cells with improved function.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2022.11.157DOI Listing

Publication Analysis

Top Keywords

cell grafting
12
grafted cells
12
chondroitin sulfate
8
sulfate hyaluronic
8
hyaluronic acid
8
in-situ forming
8
cells
8
fibroblast cells
8
scaffold
5
chitosan chondroitin
4

Similar Publications

Background: Metastatic spine tumor surgery (MSTS) is often complex and extensive leading to significant blood loss. Allogeneic blood transfusion (ABT) is the mainstay of blood replenishment but with immune-mediated postoperative complications. Alternative blood management techniques (salvaged blood transfusion [SBT]) allow us to overcome such complications.

View Article and Find Full Text PDF

GABAergic Progenitor Cell Graft Rescues Cognitive Deficits in Fragile X Syndrome Mice.

Adv Sci (Weinh)

January 2025

Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.

Fragile X syndrome (FXS) is an inherited neurodevelopmental disorder characterized by a range of clinical manifestations with no effective treatment strategy to date. Here, transplantation of GABAergic precursor cells from the medial ganglionic eminence (MGE) is demonstrated to significantly improve cognitive performance in Fmr1 knockout (KO) mice. Within the hippocampus of Fmr1-KO mice, MGE-derived cells from wild-type donor mice survive, migrate, differentiate into functionally mature interneurons, and form inhibitory synaptic connections with host pyramidal neurons.

View Article and Find Full Text PDF

Cell lines and patient-derived xenografts are essential to cancer research; however, the results derived from such models often lack clinical translatability, as they do not fully recapitulate the complex cancer biology. Identifying preclinical models that sufficiently resemble the biological characteristics of clinical tumors across different cancers is critically important. Here, we developed MOBER, Multi-Origin Batch Effect Remover method, to simultaneously extract biologically meaningful embeddings while removing confounder information.

View Article and Find Full Text PDF

Facilitating neuronal differentiation of stem cells and microenvironment remodeling are the key challenges in cell-based transplantation strategies for central nervous system regeneration. Herein, the study harnesses the intrinsic pro-neural differentiation potential of nerve-derived extracellular matrix (NDEM) and its specific affinity for cytokines to develop an NDEM-gelatin methacryloyl(gelMA)-based bifunctional hydrogel delivery system for stem cells and cytokines. This system promotes the neural differentiation of bone marrow stromal cells (BMSCs) and optimizes the therapeutic index of Interleukin-4 (IL-4) for spinal cord injury (SCI) treatment.

View Article and Find Full Text PDF

Objective: Patients receiving hematopoietic stem cell transplants (HSCT) are at increased risk for infection (CDI). The purpose of this study was to assess the effectiveness of oral vancomycin prophylaxis (OVP) for CDI in HSCT patients.

Design: Single-center, retrospective cohort.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!