Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
An ecofriendly and cost effective green method has been used for the synthesis of recyclable, high functional nanoparticles. Bimetallic nanoparticles (BmNPs), Cu-Ag, have been synthesized using beetroot extract as reducing and capping agent. Formation of BmNPs was initially confirmed by UV-visible analysis, having distinct peaks of Ag at 429 nm and Cu at 628 nm. FTIR analysis also confirmed the association of bioactive phytochemicals with Cu-Ag nanoparticles. Crystallinity and morphology of BmNPs was determined through X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), dynamic light scattering (DLS) and energy dispersion X-ray spectroscopy (EDAX). The size of spherical shape Cu-Ag BmNPs was found to be 75.58 nm and EDAX studies confirmed the percent elemental composition of Cu and Ag in synthesized nanocatalyst. Results of different analysis provided supported evidences regarding the formation of BmNPs. Catalytic potential of BmNPs was tested for the degradation of rhodamine B (Rh-B), methylene blue (MB) and methyl orange (MO) dyes. Cu-Ag BmNPs exhibited outstanding catalytic activity for the degradation of selected organic dyes and percent degradation was recorded more than 90% for each dye. In addition, antiradical property of BmNPs was tested employing DPPH and ABTS assays and it was found to be promising. Synthesized BmNPs also exhibited strong antimicrobial activity against Salmonella typhimurium and Bacillus subtilis. Recyclability of nanoparticles was also evaluated and recovery from dye degradation reaction mixture was successfully achieved. The recovered nanoparticles exhibited same catalytic potential for the degradation of Rh-B. The objective of the current study was to synthesize BmNPs Cu-Ag employing a cost effective green method having promising catalytic, antiradical and antimicrobial potential. Further, BmNPs were reused after recovery from catalytic reactions, proving that BmNPs can be recycled having the same efficiency as that of a freshly prepared Cu-Ag BmNPs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2022.137321 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!