Ionophore coccidiostats - disposition kinetics in laying hens and residues transfer to eggs.

Poult Sci

Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw 50-375, Poland. Electronic address:

Published: January 2023

Poultry production is linked with the use of veterinary medicinal products to manage diseases. Ionophore coccidiostats have been permitted for use as feed additives within the European Union (EU) for the prevention of coccidiosis in various species of poultry with except of laying hens. The presence of chemical residues in eggs is a matter of major concern for consumers' health. Despite such prohibition of use in laying hens, they were identified as the most common non-target poultry species being frequently exposed to these class of coccidiostats. Many factors can influence the presence of residues in eggs. Carryover of these class of coccidiostat feed additives in the feed of laying hens has been identified as the main reason of their occurrence in commercial poultry eggs. The physicochemical properties of individual compounds, the physiology of the laying hen, and the biology of egg formation are believed to govern the residue transfer rate and its distribution between the egg white and yolk compartments. This paper reviews the causes of occurrence of residues of ionophore coccidiostats in eggs within the EU with special emphasis on their disposition kinetics in laying hens, and residue transfer into eggs. Additional effort was made to highlight future modeling perspectives on the potential application of pharmacokinetic modeling in predicting drug residue transfer and its concentration in eggs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9676626PMC
http://dx.doi.org/10.1016/j.psj.2022.102280DOI Listing

Publication Analysis

Top Keywords

laying hens
20
ionophore coccidiostats
12
residue transfer
12
disposition kinetics
8
kinetics laying
8
transfer eggs
8
feed additives
8
residues eggs
8
hens identified
8
eggs
7

Similar Publications

Feather pecking, related feather damage, and mortality are crucial welfare and efficiency traits in laying hens. When individuals are kept in sib groups, genetic analysis of feather scores captures the performer and receiver components of feather damage due to pecking. Genetic parameters and breeding values estimated from such data with an ordinary linear mixed model refer to total breeding values.

View Article and Find Full Text PDF

This study investigated the effects of supplementing laying hen's diet with vitamin A (5,000, 10,000 and 20,000 IU/kg) and trace minerals (Zn, Mn, Cu, Fe and Se) in inorganic and organic form on the carotenoid content and deposition efficiency in egg yolk. Hen's diet consisted of two commercial dent corn hybrids (soft- and hard-type), which differed in their carotenoid profile. The feeding trial was conducted with 252 Lohmann Brown hens allocated in 84 cages that were randomly assigned to 12 dietary treatments (2 hybrids × 3 vitamin A levels × 2 trace mineral forms).

View Article and Find Full Text PDF

Probiotics improve eggshell quality via regulating microbial composition in the uterine and cecum.

Poult Sci

January 2025

State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural, University, Chengdu, 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Chengdu, 611130, China. Electronic address:

Probiotics benefit the health and production performance of chickens, but their impact on egg and eggshell quality, particularly in the later stage, remains unclear. Here, 1-day-old Tianfu green shell-laying hens were fed either non-probiotics feed (n = 180) or feed supplemented with 100 mg / kg probiotics (n = 180). 16S rDNA sequencing indicated that dietary probiotics decreased the distribution of uterine p_Firmicutes, g_Fusobacterium, and s_Fusobacterium_unclassified, while increased p_Proteobacteria, g_Ralstonia, and s_Ralstonia_unclassified.

View Article and Find Full Text PDF

Bone damages in laying hens are of great concern in poultry farming. Besides various risk factors like housing systems or nutrient supply during egg production, it has often been hypothesized that genetically high-performing laying hens may be more prone to bone damages. The relevance of dietary support during the rearing period of pullets for optimal bone development has been little addressed so far.

View Article and Find Full Text PDF

Decades of artificial selection have markedly enhanced egg production efficiency, yet the epigenetic underpinnings, notably DNA methylation dynamics in the gut, remain largely unexplored. Here, we investigate how breeds and developmental stages influence DNA methylation profiles in laying hens, and their potential relationship to laying performance and gut health. We compared two highly selected laying hen strains, Lohmann Brown-Classic (LB) and Lohmann LSL-Classic (LSL), which exhibited similar egg production but divergent physiological, metabolic, and immunological characteristics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!