Enhanced production of acetyl-CoA-based products via peroxisomal surface display in .

Proc Natl Acad Sci U S A

Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697-2580.

Published: November 2022

Colocalization of enzymes is a proven approach to increase pathway flux and the synthesis of nonnative products. Here, we develop a method for enzyme colocalization using the yeast peroxisomal membrane as an anchor point. Pathway enzymes were fused to the native Pex15 anchoring motif to enable display on the surface of the peroxisome facing the cytosol. The peroxisome is the sole location of β-oxidation in and acetyl-CoA is a by-product that is exported in the form of acetyl-carnitine. To access this untapped acetyl-CoA pool, we surface-anchored the native peroxisomal/mitochondrial enzyme Cat2 to convert acetyl-carnitine to acetyl-CoA directly upon export across the peroxisomal membrane; this increased acetyl-CoA levels 3.7-fold. Subsequent surface attachment of three pathway enzymes - Cat2, a high stability Acc1 (for conversion of acetyl-CoA to malonyl-CoA), and the type III PKS 2-pyrone synthase - demonstrated the success of peroxisomal surface display for both enzyme colocalization and access to acetyl-CoA from exported acetyl-carnitine. Synthesis of the polyketide triacetic acid lactone increased by 21% over cytosolic expression at low gene copy number, and an additional 11-fold (to 766 mg/L) after further optimization. Finally, we explored increasing peroxisomal membrane area through overexpression of the peroxisomal biogenesis protein Pex11. Our findings establish peroxisomal surface display as an efficient strategy for enzyme colocalization and for accessing the peroxisomal acetyl-CoA pool to increase synthesis of acetyl-CoA-based products.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9860249PMC
http://dx.doi.org/10.1073/pnas.2214941119DOI Listing

Publication Analysis

Top Keywords

peroxisomal surface
12
surface display
12
enzyme colocalization
12
peroxisomal membrane
12
acetyl-coa-based products
8
peroxisomal
8
pathway enzymes
8
acetyl-coa pool
8
acetyl-coa
7
surface
5

Similar Publications

The success of pollen-pistil interaction in Mauritia flexuosa (buriti), a palm adapted to the humid ecosystems, 'veredas', within the Cerrado, is influenced by intrinsic and environmental factors. Its supra-annual flowering, dioecy, and adverse climate conditions pose challenges for fertilization, therefore information on floral biology is essential. This study aimed to ascertain stigma receptivity, and elucidate structural, cytochemical, and ultrastructural aspects of the pollen-pistil relationship.

View Article and Find Full Text PDF

Clostridioides difficile is the leading cause of healthcare- and antibiotic-associated diarrhea. Surface layer protein A (SlpA), an essential component of the bacterium's outermost layer, contributes to colonization and inflammation. The peroxisome proliferator-activated receptor gamma (PPAR-γ) has been demonstrated to improve intestinal integrity and prevent inflammation in host cells.

View Article and Find Full Text PDF

-Tosyl Hydrazone Benzopyran, a New Ligand of PPARα Obtained from Mapping the Conformational Space of Its Active Site.

J Chem Inf Model

January 2025

Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL). CONICET, Ejército de los Andes 950, 5700 San Luis, Argentina.

We report here a new ligand for the peroxisome-proliferator-activated receptor type α (PPARα), an N-tosyl hydrazone benzopyran that was designed throughout the mapping of the polar zone of the binding site of PPARα; such a compound displays a strong activity on this receptor that is comparable to that of the reference compound WY-14643. For the design of the -tosyl hydrazone benzopyran, we have carried out an exhaustive conformational study of WY-14643 and a previously reported hydrazine benzopyran derivative using conformational potential energy surfaces (PES). This study allowed us to map in a systematic way the entire binding site of the PPARα.

View Article and Find Full Text PDF

The aryl hydrocarbon receptor (AhR) and the peroxisome proliferator-activated receptor γ (PPARγ) are ligand-activated transcription factors that have in recent years been investigated for their anti-inflammatory properties for treatment of inflammatory bowel diseases (IBDs). These are globally prevalent chronic maladies of the gut that lack cost-efficient therapeutical options capable of inducing long-term remission. In the present study, we used an in vitro Transwell co-culture model composed of Caco-2 epithelial cells in the apical compartment and lipopolysaccharide-treated (LPS) THP-1 macrophages in the basolateral compartment.

View Article and Find Full Text PDF

Mucosal Exosome Proteomics of Hybrid Grouper ♀ × ♂ Infected by .

Animals (Basel)

November 2024

Health and Environmental Research Center, Faculty of Environmental Management, Prince of Songkla University, Hat Yai 90110, Thailand.

infection, which causes visceral white spot disease, is a significant and economically devastating disease in aquaculture. In this study, we investigated the impact of bacterial infection on the protein composition of exosomes derived from the surface mucus of the hybrid grouper ♀ × ♂. Two hundred healthy fish were randomly separated into challenge and control groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!