By neutron spin echo (NSE) and pulsed field gradient (PFG) NMR, we study the dynamics of a polyethylene-oxide melt (PEO) with a molecular weight in the transition regime between Rouse and reptation dynamics. We analyze the data with a Rouse mode analysis allowing for reduced long wavelength Rouse modes amplitudes. For short times, subdiffusive center-of-mass mean square displacement ⟨()⟩ was allowed. This approach captures the NSE data well and provides accurate information on the topological constraints in a chain length regime, where the tube model is inapplicable. As predicted by reptation for the polymer ⟨()⟩, we experimentally found the subdiffusive regime with an exponent close to , which, however, crosses over to Fickian diffusion not at the Rouse time, but at a later time, when the ⟨()⟩ has covered a distance related to the tube diameter.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsmacrolett.2c00608DOI Listing

Publication Analysis

Top Keywords

regime rouse
8
rouse reptation
8
rouse
5
chain confinement
4
confinement anomalous
4
anomalous diffusion
4
diffusion cross
4
regime
4
cross regime
4
reptation neutron
4

Similar Publications

Rubbers prepared from technical poly(butadiene) and natural poly(isoprene) are studied by field-cycling (FC) H NMR relaxometry to elucidate the changes of the relaxation spectrum. Starting with the non-cross-linked polymer successively cross-links are introduced via sulfur or peroxide vulcanization. Applying an advanced home-built relaxometer allows one to probe entanglement dynamics in addition to Rouse dynamics.

View Article and Find Full Text PDF

Rheology of Ring Copolymers in Dilute Solutions.

J Phys Chem B

January 2025

Department of Chemistry, University of Delhi, Delhi, Delhi 110007, India.

We investigate the rheology of ring copolymers theoretically within the framework of the optimized Rouse-Zimm theory in dilute solutions. The ring copolymer is composed of two type of monomers (A and B) of different sizes (A < B), which is represented by unequal-sized beads connected via harmonic springs with different spring constants. The hydrodynamic interactions (HI) between the monomers is modeled using the preaveraged HI tensor.

View Article and Find Full Text PDF

Microstructures and Rheological Properties of Short-Side-Chain Perfluorosulfonic Acid in Water/2-Propanol.

Polymers (Basel)

June 2024

Advanced Rheology Institute, Department of Polymer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

The viscosity and viscoelasticity of polyelectrolyte solutions with a single electrostatic interaction have been carefully studied experimentally and theoretically. Despite some theoretical models describe experimental results well, the influence of multiple interactions (electrostatic and hydrophobic) on rheological scaling is not yet fully resolved. Herein, we systematically study the microstructures and rheological properties of short-side-chain perfluorosulfonic acid (S-PFSA), the most promising candidate of a proton exchange membrane composed of a hydrophobic backbone with hydrophilic side-chains, in water/2-propanol.

View Article and Find Full Text PDF

We study the dynamics of the end monomers of a real chain confined in a spherical cavity to search for a small target on the cavity surface using Langevin dynamics simulation. The results are compared and contrasted with those of a Rouse chain to understand the influence of excluded volume interactions on the search dynamics, as characterized by the first passage time (FPT). We analyze how the mean FPT depends on the cavity size Rb, the target size a, and the degree of confinement quantified by Rg/Rb, with Rg being the polymer radius of gyration in free space.

View Article and Find Full Text PDF

Architecturally different polymer chains lead to fundamentally different rheological responses and internal dynamics, which can be utilized to rationalize advanced thermoplastic nanocomposites with tunable mechanical behavior. In this work, three model poly (methyl methacrylate) (PMMA) polymers with linear, bottlebrush, and star architectures with the same total molar mass were investigated in their neat form, and nanocomposites with well-dispersed silica nanoparticles using rheology and broadband dielectric spectroscopy (BDS). The master curves of the dynamic moduli obtained by time-temperature superposition (TTS) over the entire range from the Rouse regime to the terminal flow and a sequence of significantly different relaxation modes were observed for the samples with linear and branch chains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!