A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Characterization of feruloyl esterases from Pecoramyces sp. F1 and the synergistic effect in biomass degradation. | LitMetric

Characterization of feruloyl esterases from Pecoramyces sp. F1 and the synergistic effect in biomass degradation.

World J Microbiol Biotechnol

Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China.

Published: November 2022

Feruloyl esterase (FAE; EC 3.1.1.73) cleaves the ester bond between ferulic acid (FA) and sugar, to assist the release of FAs and degradation of plant cell walls. In this study, two FAEs (Fae13961 and Fae16537) from the anaerobic fungus Pecoramyces sp. F1 were heterologously expressed in Pichia pastoris (P. pastoris). Compared with Fae16537, Fae13961 had higher catalytic efficiency. The optimum temperature and pH of both the FAEs were 45 ℃ and 7.0, respectively. They showed good stability-Fae16537 retained up to 80% activity after incubation at 37 ℃ for 24 h. The FAEs activity was enhanced by Ca and reduced by Zn, Mn, Fe and Fe. Additionally, the effect of FAEs on the hydrolytic efficiency of xylanase and cellulase was also determined. The FAE Fae13961 had synergistic effect with xylanase and it promoted the degradation of xylan substrates by xylanase, but it did not affect the degradation of cellulose substrates by cellulase. When Fae13961 was added in a mixture of xylanase and cellulase to degrade complex agricultural biomass, it significantly enhanced the mixture's ability to disintegrate complex substrates. These FAEs could serve as superior auxiliary enzymes for other lignocellulosic enzymes in the process of degradation of agricultural residues for industrial applications.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11274-022-03466-3DOI Listing

Publication Analysis

Top Keywords

xylanase cellulase
8
degradation
5
faes
5
characterization feruloyl
4
feruloyl esterases
4
esterases pecoramyces
4
pecoramyces synergistic
4
synergistic biomass
4
biomass degradation
4
degradation feruloyl
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!