Engineering Covalent Organic Frameworks with Polyethylene Glycol as Self-Sustained Humidity-Responsive Actuators.

Angew Chem Int Ed Engl

State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, China.

Published: January 2023

Regarding the global energy crisis, it is of profound significance to develop spontaneous power generators that harvest natural energy. Fabricating humidity-responsive actuators that can conduct such energy transduction is of paramount importance. Herein, we incorporate covalent organic frameworks with flexible polyethylene glycol to fabricate rigid-flexible coupled membrane actuators. This strategy significantly improves the mechanical properties and humidity-responsive performance of the actuators, meanwhile, the existence of ordered structures enables us to unveil the actuation mechanism. These high-performance actuators can achieve various actuation applications and exhibit interesting self-oscillation behavior above a water surface. Finally, after being coupled with a piezoelectric film, the bilayer device can spontaneously output electricity over 2 days. This work paves a new avenue to fabricate rigid-flexible coupled actuators for self-sustained energy transduction.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202216318DOI Listing

Publication Analysis

Top Keywords

covalent organic
8
organic frameworks
8
polyethylene glycol
8
humidity-responsive actuators
8
energy transduction
8
fabricate rigid-flexible
8
rigid-flexible coupled
8
actuators
6
engineering covalent
4
frameworks polyethylene
4

Similar Publications

Covalent organic frameworks (COFs) are often employed in oxygen reduction reactions (ORR) for hydrogen peroxide production due to their tunable structures and compositions. However, COF electrocatalysts require precise structural engineering, such as heteroatoms or metal site doping, to modulate the reaction pathway during the ORR process. In this work, we designed a tetraphenyl-p-phenylenediamine based COF electrocatalyst, namely TPDA-BDA, which exhibited excellent two-electron (2e) ORR performance with high H2O2 selectivity of 89.

View Article and Find Full Text PDF

Covalent organic frameworks (COFs) are crystalline porous materials bearing well-ordered two- or three-dimensional molecular tectons in their polymeric skeletal framework. COFs are structurally robust as well as physiochemically stable. Currently, these are being developed for their use as "heterogeneous catalysts" for various organic transformations.

View Article and Find Full Text PDF

In last few decades, the agriculture sector is facing various type of crops diseases originated by crop pests. Among various crops the tomato plant is greatly affected by many pests such as aphids and whiteflies, which are badly decreasing tomato plant yield and effecting its growth. In last few years, various type of pesticides such as Neonicotinoids and Pyrethroids are employed with are badly effecting eco system and water bodies.

View Article and Find Full Text PDF

Molecular junctions (MJs) are celebrated nanoelectronic devices for mimicking conventional electronic functions, including rectifiers, sensors, wires, switches, transistors, negative differential resistance, and memory, following an understanding of charge transport mechanisms. However, capacitive nanoscale molecular junctions are rarely seen. The present work describes electrochemically (E-Chem) grown covalently attached molecular thin films of 10, 14.

View Article and Find Full Text PDF

A novel synthesis of a nanometric MCM-41 from biogenic silica obtained from rice husk is here presented. CTABr and Pluronic F127 surfactants were employed as templating agents to promote the formation of a long-range ordered 2D-hexagonal structure with cylindrical pores and to limit the particle growth at the nanoscale level thus resulting in a material with uniform particle size of 20-30 nm. The physico-chemical properties of this sample (RH-nanoMCM) were investigated through a multi-technique approach, including PXRD, Si MAS NMR, TEM, -potential and N physisorption analysis at 77 K.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!