Surface Coating of Amorphous TiO Enables Efficient Vapor-fed Photocatalytic Overall Water Splitting with Substantial Apparent Quantum Yield.

Chem Asian J

State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China.

Published: January 2023

Photocatalytic overall water splitting represents a promising strategy for sustainable hydrogen production. However, photocorrosion and dissolution of photocatalysts and cocatalysts are common concern for the solid-liquid phase reaction. Recently, the above issues could be addressed by Domen and coworkers, when the photocatalytic water splitting was conducted in the presence of water vapor, which dramatically restrain the undesired corrosion of the photocatalysts and cocatalysts. Besides, surface decoration of hygroscopic TiO layer promotes adsorption of water molecules and prevents the corrosion process. In addition, vapor-fed photocatalytic water splitting remains considerable apparent quantum yield compared with the liquid water photocatalytic overall water splitting at pressurized condition, which endows great potential in practical application.

Download full-text PDF

Source
http://dx.doi.org/10.1002/asia.202201108DOI Listing

Publication Analysis

Top Keywords

photocatalytic water
20
water splitting
20
vapor-fed photocatalytic
8
water
8
apparent quantum
8
quantum yield
8
photocatalysts cocatalysts
8
photocatalytic
5
splitting
5
surface coating
4

Similar Publications

Composite photocatalysts based on metal nanoparticles and functional polymers attract much attention compared to inorganic photocatalysts. In this study, a reusable magnetite/anion exchanger (FeO/PPE-2) functional material is synthesized by a hydrothermal method, and its photocatalytic activity is evaluated for the photocatalytic degradation of Rhodamine B (RhB). The results from materials characterization confirm a well-defined morphology of magnetic FeO/PPE-2 functional material and the formation of FeO nanocrystals with different shapes and sizes on the surface of anion exchange material (PPE-2).

View Article and Find Full Text PDF

Unveiling the role of NiFeM hydroxide (M = Pt, Ru, Ir, Rh) cocatalysts for robust H production in photocatalytic water splitting.

Chem Commun (Camb)

January 2025

Fujian Provincial Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fuzhou 350007, China.

In this study, the NiFe-LDH doped with different Pt group metals (Pt, Ru, Ir, Rh) was prepared as a cocatalyst for photocatalytic H production over g-CN. It is found that the doped NiFe-LDH loaded g-CN generally displays higher photocatalytic activity than the raw NiFe-LDH modified one, where the NiFeRu-LDH loaded g-CN shows the optimal H evolution rate of 77.4 μmol h, about 5.

View Article and Find Full Text PDF

Template-free synthesis of single-crystal SrTiO nanocages for photocatalytic overall water splitting.

Chem Commun (Camb)

January 2025

Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.

In this study, we present a novel approach to achieve the template-free fabrication of nanocage-shaped SrTiO (N-STO) single crystals molten salt flux treatment. Systematic characterizations demonstrate the high crystallinity and low defect density of N-STO. The N-STO single crystals enable overall water splitting (OWS) with hydrogen and oxygen evolution rates of 100.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) have shown significant potential in the photocatalytic activation of peroxydisulfate (PDS). Although many MOFs have been investigated for their ability to activate PDS, the impact of structural interpenetration on this process remains underexplored. In this study, MIL-88D(FeNi) and MIL-126(FeNi) were selected to systematically study this effect.

View Article and Find Full Text PDF

Type II/Schottky heterojunctions-triggered multi-channels charge transfer in Pd-TiO-CuO hybrid promotes photocatalytic hydrogen production.

J Colloid Interface Sci

January 2025

College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Ecodyeing & Finishing, Wuhan Textile University, Wuhan 430200, PR China. Electronic address:

Rapid charge recombination, limited light response, and slow surface reactions were observed in the photocatalysts, thereby limiting their future-oriented applications in photocatalytic hydrogen production through water splitting. Constructing a multi-channel charge separation photocatalysis system could solve those questions. In this study, Pd-TiO-CuO composites were successfully accomplished via a facile chemical reduction method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!