Crystallographic Deciphering of Spontaneous Self-Assembly of Achiral Calciphores to Chiral Complexes.

Chemistry

State Key Laboratory of, Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research, Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.

Published: February 2023

Thiapyricins (TPC-A/B, 1 and 2), which are new metallophore scaffolds exhibiting selective divalent cation binding property, were produced in response to metal-deprived conditions by Saccharothrix sp. TRM_47004 isolated from the Lop Nor Salt Lake. TPCs represent a thiazolyl-pyridine skeleton of a calcium-binding natural product, calciphore, owing to the selectivity to calcium ions among diverse metal ions. The thiapyricins exhibited notable co-crystalline characteristics of the apo- and holo-forms with racemic enantiomers comprising a pair of space isomers in a Δ/Λ-form. Therefore, we postulated a mechanism for the four-hierarchical self-assembly of achiral natural products into chiral complexes. Furthermore, their metal-chelating trait aided the adaptation of the host during metal starvation by increasing the production of TPCs. This study presents a structural paradigm of a new calciphore, provides insight into the mechanism of natural product assembly, and highlights the causality between the production of the metallophore and metallic habitats.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202203127DOI Listing

Publication Analysis

Top Keywords

self-assembly achiral
8
chiral complexes
8
natural product
8
crystallographic deciphering
4
deciphering spontaneous
4
spontaneous self-assembly
4
achiral calciphores
4
calciphores chiral
4
complexes thiapyricins
4
thiapyricins tpc-a/b
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!