We use synchrotron radiation-induced core level photoemission spectroscopy to investigate the influence of vacancies, produced by ion bombardment, on monolayer graphene/Ni(111) exposed to CO at pressures ranging from ultra-high vacuum (10 mbar) up to near ambient (5.6 mbar) conditions. CO intercalates at a rate which is comparable to the one observed in absence of defects and reacts the Boudouard reaction producing additional carbon atoms and CO. While the former attach to the graphene layer and extend it over areas previously covered by carbide, the CO molecules bind to the graphene vacancies forming epoxy-like bonds across them, thus mending the defects. The so-formed complexes give rise to a peak at 533.4 eV which persists upon evacuating the vacuum chamber at room temperature and which we assign to a covalently bonded species containing C and O.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2cp03441g | DOI Listing |
Small
January 2025
School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi, 330031, China.
As emerging cutting-edge energy storage technologies, aqueous zinc-ion batteries (AZIBs) have garnered extensive research attention for its high safety, low cost, abundant raw materials, and, eco-friendliness. Nevertheless, the commercialization of AZIBs is mainly limited by insufficient development of cathode materials. Among potential candidates, MXene-based materials stand out as a promising option for their unique combination of hydrophilicity and conductivity.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 Jiangsu, PR China. Electronic address:
The Mn-based Prussian blue analogs (PBAs) have garnered significant attention due to their high specific capacity, stemming from the unique multi-electron reactions with Na. However, the structural instability caused by multi-ion insertion impacts the cycle life, thus limiting their further application in aqueous sodium-ion batteries (ASIBs). To address this issue, this work employed an in situ epitaxial solvent deposition method to homogeneously grow Ni hexacyanoferrate (NiHCF) on the surface of MnPBA, which can effectively overcome the de-intercalation instability.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
National Engineering Research Centre for Mg Alloys, Chongqing University, Chongqing 400044, PR China.
Rechargeable Mg batteries are promising candidates for achieving considerable high-energy-density. Enhancing the energy density can be achieved by integrating metallic Mg anodes with conversion-type cathode materials, which are characterized by multi-electron transfer process and elevated specific capacities in contrast to intercalation-type materials. Despite these advantages, the conversion-type cathodes still have some challenges of substantial volume expansion, sluggish diffusion kinetics and intricate mesophase evolution during repeated electrochemical reactions.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Shanghai for Science and Technology, Institute of Energy Material Science, Shanghai 200093, Shanghai, CHINA.
Rechargeable zinc batteries (RZBs) are hindered by two primary challenges: instability of Zn anode and deterioration of the cathode structure in traditional aqueous electrolytes, largely attributable to the decomposition of active H2O. Here, we design and synthesize a non-flammable water-in-dimethyl sulfoxide electrolyte to address these issues. X-ray absorption spectroscopy, in situ techniques and computational simulations demonstrate that the activity of H2O in this electrolyte is extremely compressed, which not only suppresses the side reactions and increases the reversibility of Zn anode, but also diminishes the cathode dissolution and proton intercalation.
View Article and Find Full Text PDFInorg Chem
January 2025
School of Chemistry and Chemical Engineering, School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China.
Electrochemical water splitting is a promising method for the generation of "green hydrogen", a renewable and sustainable energy source. However, the complex, multistep synthesis processes, often involving hazardous or expensive chemicals, limit its broader adoption. Herein, a nitrate (NO) anion-intercalated nickel-iron-cerium mixed-metal (oxy)hydroxide heterostructure electrocatalyst is fabricated on nickel foam (NiFeCeOH@NF) via a simple electrodeposition method followed by cyclic voltammetry activation to enhance its surface properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!