A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparison of fiber reinforcing methods of composite resin: A flexural strength and stereo microscopy study. | LitMetric

This study aimed to compare the effect of fiber reinforcing methods on the flexural strength and failure modes of indirect composite resins. Based on the reinforcement methods, the bar specimens (3 × 3 × 25 mm) were divided into five groups (n = 20). Glass or polyethylene fibers were used for reinforcement of indirect composite resins. Fibers were either light polymerized and mixed with indirect composite resin or mixed with indirect composite resin after resin application and polymerized together. Indirect composite resin without fiber reinforcement was used as control. All five types of specimens were stored in distilled water at 37°C for 24 h. Half of the specimens were additionally thermocycled. Then the specimens were tested in a three-point bending test. Failure types were examined and categorized by using stereo microscope. The data were analyzed using two-way ANOVA and Tukey HSD test. Flexural strength was found to be significantly higher for fiber-reinforced indirect resin composites than control. However, the fiber-reinforced groups did not present any significant difference. Analysis revealed aging does not affect the flexure strength of fiber reinforcement of indirect composite resin. The study concluded that the flexure strength of indirect composite resins was improved with fiber reinforcement. Different fiber reinforcement methods demonstrated similar effects on the flexure strength of indirect composite resin. Reinforcement with glass or polyethylene fibers presented the potential to improve the mechanical properties of indirect composite resins. RESEARCH HIGHLIGHTS: Flexural strength of indirect composite resins are affected by the reinforcement of composites with glass or polyethylene fibers. Aging with thermocycling has no effect on the flexural strength of the indirect composite resins, however can cause catastrophic failures in material.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jemt.24266DOI Listing

Publication Analysis

Top Keywords

indirect composite
44
composite resin
24
composite resins
24
flexural strength
20
fiber reinforcement
16
strength indirect
16
composite
12
indirect
12
glass polyethylene
12
polyethylene fibers
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!