Background: Ingestion of methanol can result in severe irreversible morbidity, and death. Simple and easy methods to detect methanol and other hazardous additives prior to consumption can prevent fatalities. This form of harm reduction is analogous to the widely practiced "pill testing" of recreational drugs in various countries. We aimed to evaluate the performance of two qualitative and quantitative kits to simultaneously identify the presence of methanol and formaldehyde in alcoholic beverages, and compare this to the standard gas chromatographic (GC) method.
Methods: Two-hundred samples of Indian and Iranian alcoholic drinks were examined by two new qualitative and quantitative chemical kits designed based on a modified chromotropic acid (CA) method, as well as a gold standard GC method.
Results: Methanol levels were similar when evaluated by GC and quantitative method ( = - 0.328, = 0.743). The 75th percentile of methanol level detection was 4,290 mg L (range; 0-83,132) using GC compared to that of 4,671 mg L (range; 0-84,960) using the qualitative kit (predefined color intensity reflecting the methanol/ethanol ratio). The quantitative kit was able to detect all methanol-contaminated and non-contaminated samples (110 and 60 cases, respectively: 100% sensitivity). In 25 samples, GC analysis showed no methanol; but the qualitative kit detected possible toxic substances. Formaldehyde measurement by UV/Vis analysis showed the presence of formaldehyde in 23 samples (92%) with a median 912 [IQR 249, 2,109; range 112-2,742] mg L.
Conclusion: Methanol and formaldehyde can be easily detected using these simple CA chemical kits. Qualitative positive results may indicate the risk of poisoning if the beverage is consumed. CA kits can be used in community setting by public health units and community organizations to monitor for methanol contamination and inform a public health response to reduce methanol-related harms to the public.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9670154 | PMC |
http://dx.doi.org/10.3389/fpubh.2022.983663 | DOI Listing |
Open Life Sci
December 2024
Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, 21934, Egypt.
Methanolic extract from was investigated for its phytochemical content, antioxidant, and antimicrobial properties against phytopathogenic fungi and bacteria. Phytochemical analysis revealed the presence of saponin, tannins, and alkaloids with 1.25%, 18.
View Article and Find Full Text PDFNat Prod Res
December 2024
Phytochemistry Department, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G. C, Tehran, Iran.
Plant-based nano-insecticides like provide eco-friendly pest control with low resistance risk. This study aimed to evaluate the insecticidal activity of the FeO @Carbon nanoformulation of extract with a carbon shell and pure extract against (eggs and larvae), a significant potato pest in Iran. A modified solvothermal method produced highly water-dispersible magnetite (FeO) particles, with citrate as a stabilising agent.
View Article and Find Full Text PDFJ Fish Biol
December 2024
Instituto de Investigaciones Marinas y Costeras, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CCT - Mar del Plata, Consejo Nacional de Investigaciones Científicas y Tecnicas, Mar del Plata, Argentina.
Fish visceral waste, which is normally discarded, is considered one of the richest sources of proteinases with potential biotechnological applications. For this reason, alkaline proteinases from viscera of Argentine hake Merluccius hubbsi, Brazilian flathead Percophis brasiliensis, Brazilian codling Urophycis brasiliensis, and stripped weakfish Cynoscion guatucupa were characterized. Individuals were caught by a commercial fleet off the coast of the Argentinean Sea.
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
December 2024
Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-Cho, Naka-Ku, Sakai, Osaka, 599-8531, Japan.
Background: Currently, efficient technologies producing useful chemicals from alternative carbon resources, such as methanol, to replace petroleum are in demand. The methanol-utilizing yeast, Komagataella phaffii, is a promising microorganism to produce chemicals from methanol using environment-friendly microbial processes. In this study, to achieve efficient D-lactic acid production from methanol, we investigated a combination of D-lactate dehydrogenase (D-LDH) genes and promoters in K.
View Article and Find Full Text PDFJ Chromatogr A
December 2024
School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China. Electronic address:
Countercurrent chromatography (CCC) is an efficient technique for purifying bioactive natural compounds, but selecting the solvent system can be a time-consuming and crucial process for successful separation. This paper discussed the HPLC-assisted mathematical prediction method for the n-hexane/alcohol solvents/water (HAWat) and ethyl acetate/n-butanol/water (EBuWat) systems and designed an intelligent online selection system to simplify the separation process. First, the applicable rage of HAWat and EBuWat solvent systems were quantified by the methanol concentration at the column inlet when template molecules peak in a HPLC analysis (B%).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!