Environmental conditions experienced during the larval dispersal of marine organisms can determine the size-at-settlement of recruits. It is, therefore, not uncommon that larvae undergoing different dispersal histories would exhibit phenotypic variability at recruitment. Here, we investigated morphological differences in recently settled southern rock lobster () recruits, known as pueruli, along a latitudinal and temporal gradient on the east coast of Tasmania, Australia. We further explored whether natural selection could be driving morphological variation. We used double digest restriction site-associated DNA sequencing (ddRADseq) to assess differences in the genetic structure of recently settled recruits on the east coast of Tasmania over 3 months of peak settlement during 2012 (August-October). Phenotypic differences in pueruli between sites and months of settlement were observed, with significantly smaller individuals found at the northernmost site. Also, there was a lack of overall genetic divergence; however, significant differences in pairwise F values between settlement months were observed at the southernmost study site, located at an area of confluence of ocean currents. Specifically, individuals settling into the southernmost earlier in the season were genetically different from those settling later. The lack of overall genetic divergence in the presence of phenotypic variation indicates that larval environmental history during the dispersal of could be a possible driver of the resulting phenotype of settlers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9667296PMC
http://dx.doi.org/10.1002/ece3.9519DOI Listing

Publication Analysis

Top Keywords

phenotypic variability
8
southern rock
8
rock lobster
8
east coast
8
coast tasmania
8
lack genetic
8
genetic divergence
8
disentangling genetic
4
genetic environmental
4
environmental effects
4

Similar Publications

Translocating individuals from multiple source populations is one way to bolster genetic variation and avoid inbreeding in newly established populations. However, mixing isolated populations, especially from islands, can potentially lead to outbreeding depression and/or assortative mating, which may limit interbreeding between source populations. Here, we investigated genetic consequences of mixing individuals from two island populations of the dibbler () in an island translocation.

View Article and Find Full Text PDF

Common reed () is a cosmopolitan species, though its dieback is a worldwide phenomenon. In order to assess the evolutionary role of phenotypic plasticity in a successful plant, the values and plasticity of photophysiological traits of were investigated in the Lake Fertő wetlands at 5 sites with different degrees of reed degradation and along a seasonal sequence. On the one hand, along the established ecological degradation gradient, photophysiological traits of changed significantly, affecting plant productivity, although no consistent gradient-type trends were observed.

View Article and Find Full Text PDF

Abaca ( Nee) is the primary source of manila hemp fiber, a vital industrial product for the country. Previous studies have relied on molecular markers designed for other species or distant genera like rice, limiting accurate genetic characterization and germplasm conservation. To address this, we developed 50 genome-specific molecular markers based on the recently released whole genome sequence assembly of Abaca var.

View Article and Find Full Text PDF

This study evaluates the response of ground beetle (Coleoptera: Carabidae) assemblage to forest management practices by integrating species composition, body traits, wing morphology and developmental instability. Traditional approaches that rely on averaged identity-based descriptors often overlook phenotypic plasticity and functional trait variability, potentially masking species-specific responses to environmental changes. To address this, we applied a three-layered analytical approach to address this gap, utilising ground beetle occurrence and morphological trait data from Podyjí National Park, Czech Republic.

View Article and Find Full Text PDF

All species must partition resources among the processes that underly growth, survival, and reproduction. The resulting demographic trade-offs constrain the range of viable life-history strategies and are hypothesized to promote local coexistence. Tropical forests pose ideal systems to study demographic trade-offs as they have a high diversity of coexisting tree species whose life-history strategies tend to align along two orthogonal axes of variation: a growth-survival trade-off that separates species with fast growth from species with high survival and a stature-recruitment trade-off that separates species that achieve large stature from species with high recruitment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!