In this study, the differences in chlorophyll fluorescence transient (OJIP) and modulated 820 nm reflection (MR) of cucumber leaves were probed to demonstrate an insight into the precise influence of melatonin (MT) on cucumber photosystems under low temperature stress. We pre-treated cucumber seedlings with different levels of MT (0, 25, 50, 100, 200, and 400 μmol · L) before imposing low temperature stress (10 °C/6 °C). The results indicated that moderate concentrations of MT had a positive effect on the growth of low temperature-stressed cucumber seedlings. Under low temperature stress conditions, 100 μmol · L (MT 100) improved the performance of the active photosystem II (PSII) reaction centers (PIabs), the oxygen evolving complex activity (OEC centers) and electron transport between PSII and PSI, mainly by decreasing the L-band, K-band, and G-band, but showed differences with different duration of low temperature stress. In addition, these indicators related to quantum yield and energy flux of PSII regulated by MT indicated that MT (MT 100) effectively protected the electron transport and energy distribution in the photosystem. According to the results of ≥ 1 and MR signals, MT also affected PSI activity. MT 100 decreased the minimal value of MR/MR and the oxidation rate of plastocyanin (PC) and PSI reaction center (P700) ( ), while increased △MR/MR and deoxidation rates of PC and P ( ). The loss of the slow phase of MT 200 and MT 400-treated plants in the MR kinetics was due to the complete prevention of electron movement from PSII to re-reduce the PC and P700 . These results suggest that appropriate MT concentration (100 μmol · L) can improve the photosynthetic performance of PS II and electron transport from primary quinone electron acceptor (Q) to secondary quinone electron acceptor (Q), promote the balance of energy distribution, strengthen the connectivity of PSI and PSII, improve the electron flow of PSII Q to PC and P from reaching PSI by regulating multiple sites of electron transport chain in photosynthesis, and increase the pool size and reduction rates of PSI in low temperature-stressed cucumber plants, All these modifications by MT 100 treatment promoted the photosynthetic electron transfer smoothly, and further restored the cucumber plant growth under low temperature stress. Therefore, we conclude that spraying MT at an appropriate concentration is beneficial for protecting the photosynthetic electron transport chain, while spraying high concentrations of MT has a negative effect on regulating the low temperature tolerance in cucumber.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9671077PMC
http://dx.doi.org/10.3389/fpls.2022.1029854DOI Listing

Publication Analysis

Top Keywords

electron transport
24
low temperature
24
temperature stress
20
photosynthetic electron
12
electron
11
cucumber
8
low
8
cucumber seedlings
8
growth low
8
low temperature-stressed
8

Similar Publications

Neuropsychiatric and neurodevelopmental disorders are complex conditions that arise from a variety of interacting genetic and environmental factors. Among these factors, altered serotonergic signalling and mitochondrial dysfunction are strongly implicated, with a growing body of evidence to suggesting that serotonergic signalling is an important regulator of mitochondrial biogenesis. The serotonin transporter (SERT) functions to regulate synaptic 5-HT, and human allelic variants of the serotonin reuptake transporter-linked polymorphic region (5-HTTLPR) are associated with reduced SERT expression and increased susceptibility for developing neuropsychiatric disorders.

View Article and Find Full Text PDF

Proposing lithium pump mechanism for observing Ag-Li two-phase interface reaction of in-situ Li-O battery by two-step method.

J Colloid Interface Sci

January 2025

Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004 China; Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 China. Electronic address:

Silver (Ag) plays an important role as a cathode catalyst in lithium-oxygen batteries (Li-O batteries). However, the catalytic mechanism of Ag remains unclear. Despite efforts dedicated to studying interfacial reactions, observing efficient reactions and ion transport at the Ag-Li solid-solid interface continues to be a challenge.

View Article and Find Full Text PDF

Increasing microplastic concentrations have nonlinear impacts on the physiology of reef-building corals.

Sci Total Environ

January 2025

Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany; Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA.

The pollution of marine environments with plastics, particularly microplastic (MP, i.e., plastic particles <5 mm), is a major threat to marine biota, including corals.

View Article and Find Full Text PDF

We have developed a novel S-scheme mechanism to expand the photoresponse range of BiSiO. This study reports the successful creation of a CN/BS heterojunction photocatalyst, which is composed of g-CN and BiSiO. The synthesis was achieved through a simple two-step procedure, involving hydrothermal treatment and subsequent calcination.

View Article and Find Full Text PDF

Despite recent advancements in organic photovoltaics (OPVs), further improvements in power conversion efficiency (PCE) and device lifetime are necessary for commercial viability. Strategies such as optimizing the molecular orientation and minimizing the charge traps of organic films are particularly effective in enhancing photovoltaic performance. In this study, we successfully utilized vacuum electrospray deposition (VESD) to achieve favourable face-on stacking geometries while preserving the integrity of the interfaces in poly(3-hexylthiophene-2,5-diyl) (P3HT): [6,6]-phenyl-C-butyric acid methyl ester (PCBM) bulk heterojunction (BHJ) films.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!