Background: Glioblastoma (GBM) is a very frequent primary tumour in the cerebrospinal nervous system. Temozolomide (TMZ) is the first-line treatment for patients with GBM. However, some of GBM patients do not respond to TMZ. O6-methylguanine-DNA-methytransferase (MGMT) remains a major cause. In a previous study, we detected antibodies against MGMT peptides in patients with glioma, and five highly responsive autoantibodies anti-MGMT-02, anti-MGMT-04, anti-MGMT-07, anti-MGMT-10, and anti-MGMT-18 were identified that could be used to dynamically assess chemotherapy-resistant TMZ. Therefore, targeting MGMT peptides may be a potential therapeutic approach for GBM to fight TMZ resistance.
Methods: First, MGMT-02 and MGMT-04 polypeptides with cell-penetrating peptides were designed and connected to FITC tracer for immunofluorescence localisation. CCK-8 and colony formation assay were performed to evaluate cell proliferation ability. Western blot and immunofluorescence analysis were used to detected the expression of apoptosis-related protein. Flow cytometry was used to detect the proportion of apoptosis in cells. TMZ-resistant effect of MGMT-02/04 peptides was assessed in intracranial xenograft nude mouse model.
Results: We also found reduced apoptosis of cells treated with MGMT-02 and MGMT-04 peptides and TMZ compared with those treated separately with TMZ and experiences.
Conclusion: The results of this study indicate that MGMT-02 and MGMT-04 peptides have a role in glioma resistance and that MGMT peptides may serve as a precise target for TMZ-resistant GBM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9672402 | PMC |
http://dx.doi.org/10.1016/j.bbrep.2022.101386 | DOI Listing |
Sci Rep
November 2024
Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
O-methylguanine-DNA methyltransferase (MGMT) is a DNA damage repair enzyme. The roles of this enzyme in immune cells remain unclear. In this study, we explored the roles of MGMT in bone marrow-derived murine macrophages (BMMs) via the use of MGMT knockout (KO) mice.
View Article and Find Full Text PDFLife Sci
November 2024
The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha 410081, China; State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China. Electronic address:
Aims: The incidence of recurrent gliomas is high, exerting low survival rates and poor prognoses. Transcription factor AP-2α has been reported to regulate the progression of primary glioblastoma (GBM). However, the function of AP-2α in recurrent gliomas is largely unclear.
View Article and Find Full Text PDFCells
August 2024
Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany.
Overcoming temozolomide (TMZ)-resistance is a major challenge in glioblastoma therapy. Therefore, identifying the key molecular player in chemo-resistance becomes urgent. We previously reported the downregulation of PDCD10 in primary glioblastoma patients and its tumor suppressor-like function in glioblastoma cells.
View Article and Find Full Text PDFDrug Resist Updat
September 2024
Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China. Electronic address:
O-methylguanine DNA methyltransferase (MGMT) is a crucial determinant of temozolomide (TMZ) sensitivity in patients with glioblastoma (GBM). The therapeutic potential of small interfering RNA (siRNA) targeting MGMT to enhance TMZ sensitivity has been hampered by serum nuclease degradation, off-target effects, poor accumulation at tumor sites, and low circulation in blood stream. In this study, we developed a framework nucleic acid-based nanoparticles (FNN), which is constructed from a six-helix DNA bundle, to encapsulate and protect siMGMT for improving TMZ sensitivity in GBM treatment.
View Article and Find Full Text PDFCancers (Basel)
July 2024
Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing 100029, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!