Does aerobic exercise reduce NASH and liver fibrosis in patients with non-alcoholic fatty liver disease? A systematic literature review and meta-analysis.

Front Endocrinol (Lausanne)

Department of Vascular Medicine, Amsterdam Gastroenterology, Endocrinology Metabolism, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, Netherlands.

Published: November 2022

Background: Exercise is an effective strategy for the prevention and regression of hepatic steatosis in patients with non-alcoholic fatty liver disease (NAFLD), but it is unclear whether it can reduce advanced stages of NAFLD, i.e., steatohepatitis and liver fibrosis. Furthermore, it is not evident which modality of exercise is optimal to improve/attenuate NAFLD.

Objectives: The aim is to systematically review evidence for the effect of aerobic exercise (AE) on NAFLD, in particular non-alcoholic steatohepatitis (NASH) and liver fibrosis.

Methods: A systematic literature search was conducted in Medline and Embase. Studies were screened and included according to predefined criteria, data were extracted, and the quality was assessed by Cochrane risk of bias tools by two researchers independently according to the protocol registered in the PROSPERO database (CRD42021270059). Meta-analyses were performed using a bivariate random-effects model when there were at least three randomized intervention studies (RCTs) with similar intervention modalities and outcome.

Results: The systematic review process resulted in an inclusion a total of 24 studies, 18 RCTs and six non-RCTs, encompassing 1014 patients with NAFLD diagnosed by histological or radiological findings. Studies were grouped based on the type of AE: moderate-intensity continuous training (MICT) and high-intensity interval training (HIIT). A total of twelve meta-analyses were conducted. Compared to controls, MICT resulted in a mean difference (MD) in the NAFLD biomarkers alanine transaminase (ALT) and aspartate aminotransferase (AST) of -3.59 (CI: -5.60, -1.59, p<0.001) and -4.05 (CI: -6.39, -1.71, p<0.001), respectively. HIIT resulted in a MD of -4.31 (95% CI: -9.03, 0.41, p=0.07) and 1.02 (95% CI: -6.91, 8.94, p=0.8) for ALT and AST, respectively. Moreover, both AE types compared to controls showed a significantly lower magnetic resonance spectroscopy (MRS) determined liver fat with a MD of -5.19 (95% CI: -7.33, -3.04, p<0.001) and -3.41 (95% CI: -4.74, -2.08, p<0.001), for MICT and HIIT respectively. MICT compared to controls resulted in a significantly higher cardiorespiratory fitness (MD: 4.43, 95% CI: 0.31, 8.55, p=0.03).

Conclusion: Liver fat is decreased by AE with a concomitant decrease of liver enzymes. AE improved cardiorespiratory fitness. Further studies are needed to elucidate the impact of different types of AE on hepatic inflammation and fibrosis.

Systematic Review Registration: https://www.crd.york.ac.uk/prospero/, identifier (CRD42021270059).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9669057PMC
http://dx.doi.org/10.3389/fendo.2022.1032164DOI Listing

Publication Analysis

Top Keywords

aerobic exercise
8
nash liver
8
liver fibrosis
8
patients non-alcoholic
8
non-alcoholic fatty
8
fatty liver
8
systematic literature
8
studies rcts
8
liver
5
nafld
5

Similar Publications

Outcomes for Children With Congenital Heart Disease Undergoing Ventricular Assist Device Implantation: An ACTION Registry Analysis.

J Am Coll Cardiol

December 2024

Division of Cardiology, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.

Background: There are no contemporary reports that highlight the national outcomes for children with congenital heart disease (CHD) undergoing ventricular assist device (VAD) implantation.

Objectives: This study sought to evaluate differences in VAD outcomes for children with CHD to those with non-CHD as well as those with univentricular CHD to those with biventricular CHD.

Methods: Data for CHD and non-CHD patients from the multicenter ACTION (Advanced Cardiac Therapies Improving Outcomes Network) undergoing VAD implantation from April 2018 to February 2023 were included.

View Article and Find Full Text PDF

Flexible high-deflection strain gauges have been demonstrated to be cost-effective and accessible sensors for capturing human biomechanical deformations. However, the interpretation of these sensors is notably more complex compared to conventional strain gauges, particularly during dynamic motion. In addition to the non-linear viscoelastic behavior of the strain gauge material itself, the dynamic response of the sensors is even more difficult to capture due to spikes in the resistance during strain path changes.

View Article and Find Full Text PDF

Safety of Immersive Virtual Reality for the Management of Parkinson's Disease.

Sensors (Basel)

December 2024

Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal.

Virtual reality (VR) has been used in research and clinical practice in the management of Parkinson's disease (PD), potentially enhancing physiotherapy. Adverse events (AEs) associated with VR applications in PD have been poorly explored. We conducted a randomized controlled trial to compare two 12-week interventions using physiotherapy and immersive VR, and analyzed the frequency and type of AEs occurring in 30 people with PD.

View Article and Find Full Text PDF

Inappropriate, excessive, or overly strenuous training of sport horses can result in long-term injury, including the premature cessation of a horse's sporting career. As a countermeasure, this study demonstrates the easy implementation of a biomechanical load monitoring system consisting of five commercial, multi-purpose inertial sensor units non-invasively attached to the horse's distal limbs and trunk. From the data obtained, specific parameters for evaluating gait and limb loads are derived, providing the basis for objective exercise load management and successful injury prevention.

View Article and Find Full Text PDF

Simultaneous localization and mapping (SLAM) techniques can be used to navigate the visually impaired, but the development of robust SLAM solutions for crowded spaces is limited by the lack of realistic datasets. To address this, we introduce InCrowd-VI, a novel visual-inertial dataset specifically designed for human navigation in indoor pedestrian-rich environments. Recorded using Meta Aria Project glasses, it captures realistic scenarios without environmental control.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!