During scram, the Control Rod Assembly (CRA) is quickly dropped into the core and as well, if any of the operating limits are exceeded, the CRA is dropped into the core within a stipulated time to shut down the reactor power as soon as possible. In this study, the Computational Fluid Dynamics (CFD) approach was used to investigate the CRA drop dynamics of a lead-based research reactor. To simulate the flow field around the CRA in the guide tube, a 3-dimensional model of the CRA in the LBE-filled guide tube was developed and discretized; and the averaged Navier-Stokes equations coupled with the dynamic mesh method were adopted. Considering the large mesh deformation in the LBE coolant domain while the CRA drops, the recently developed FSI method in the CFX code, namely the rigid body approach, was adopted, which falls under the monolithic method. In this method, the translational CRA wall, which is partially immersed in the LBE, was set as a rigid body. It has the advantage of updating and improving the mesh quality through the mesh and re-meshing technique during the process of computation. Compared with the results of the work done in the available literature, the CFD model proved to be applicable and reliable. From the results, the inherent high density among the LBE flow characteristics had the most influence on the drop time. The mass of the CRA impacts its driving force so that the drop time reduces when the CRA mass is increased. In conclusion, the method used in this study can be applied to compute and predict significant parameters which can serve as a reference for a suitable design of the CRA and its drive mechanism in the case of modification for safety.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9672312 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2022.e11540 | DOI Listing |
Polymers (Basel)
January 2025
Centre for Nanomaterials and Biotechnology, Faculty of Science, University of Jan Evangelista Purkyně, Pasteurova 15, 400 96 Ústí nad Labem, Czech Republic.
Surface modification of various polymer foils was achieved by UV activation and chemical grafting with cysteamine to improve surface properties and antimicrobial efficacy. UVC activation at 254 nm led to changes in surface wettability and charge density, which allowed the introduction of amino and thiol functional groups by cysteamine grafting. X-ray photoelectron spectroscopy (XPS) confirmed increased nitrogen and sulfur content on the modified surfaces.
View Article and Find Full Text PDFMolecules
January 2025
College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
Daytime radiative cooling, based on selective infrared emissions through atmospheric transparency windows to outer space and the reflection of solar irradiance, is a zero-energy and environmentally friendly cooling technology. Poly(ethylene oxide) (PEO) electrospun membranes have both selective mid-infrared emissions and effective sunlight reflection, inducing excellent daytime radiative cooling performance. However, PEO is highly water soluble, which makes electrospun PEO membranes unable to cope with rainy conditions when used for outdoor daytime radiative cooling.
View Article and Find Full Text PDFMicroorganisms
January 2025
State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
Phytopathogenic Jagger causes lettuce drop, a destructive soil-borne disease. As potential biocontrol agents for this disease, 2 of 31 bacterial strains isolated from soil samples from fields containing Jagger were identified using in vitro antagonistic assays against Jagger. Bioactivity experiments showed that Bac20 had higher inhibitory activity against Jagger than Bac45.
View Article and Find Full Text PDFMicromachines (Basel)
January 2025
School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK.
This study evaluates the performance of continuous flow and drop-based microfluidic devices for the synthesis of silver nanoparticles (AgNPs) under identical hydrodynamic and chemical conditions. Flows at low values of Dean number (De < 1) were investigated, where the contribution of the vortices forming inside the drop to the additional mixing inside the reactor should be most noticeable. In the drop-based microfluidic device, discrete aqueous drops serving as reactors were generated by flow focusing using silicone oil as the continuous phase.
View Article and Find Full Text PDFMicromachines (Basel)
January 2025
Department of Biomechatronics Engineering, National Taiwan University, Taipei 106319, Taiwan.
Silicon carbide (SiC) has significant potential as a third-generation semiconductor material due to its exceptional thermal and electronic properties, yet its high hardness and brittleness make processing costly and complex. This study introduces ultraviolet laser ablation as a method for direct SiC material removal, investigating the effects of varying scanning speeds on surface composition, hardness, and ablation depth. The results indicate optimal processing speeds for the Si and C faces at 200 mm/s and 100 mm/s, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!