Background: We previously reported a novel technique for fabricating dermo-epidermal junction (DEJ)-like micropatterned collagen scaffolds to manufacture an produced oral mucosa equivalent (EVPOME) for clinical translation; however, more biomimetic micropatterns are required to promote oral keratinocyte-based tissue engineering/regenerative medicine. In addition, in-process monitoring for quality control of tissue-engineered products is key to successful clinical outcomes. However, evaluating three-dimensional tissue-engineered constructs such as EVPOME is challenging. This study aimed to update our technique to fabricate a more biomimetic DEJ structure of oral mucosa and to investigate the efficacy of optical coherence tomography (OCT) in combination with deep learning for non-invasive EVPOME monitoring.
Methods: A picosecond laser-textured microstructure mimicking DEJ on stainless steel was used as a negative mould to fabricate the micropatterned collagen scaffold. During EVPOME manufacturing, OCT was applied twice to monitor the EVPOME and evaluate its epithelial thickness.
Findings: Our moulding system resulted in successful micropattern replication on the curved collagen scaffold. OCT imaging visualised the epithelial layer and the underlying micropatterned scaffold in EVPOME, enabling to non-invasively detect specific defects not found before the histological examination. Additionally, a gradual increase in epithelial thickness was observed over time.
Conclusion: These findings demonstrate the feasibility of using a stainless-steel negative mould to create a more biomimetic micropattern on collagen scaffolds and the potential of OCT imaging for quality control in oral keratinocyte-based tissue engineering/regenerative medicine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9667272 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2022.e11468 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!