Studies reporting the performance of anaerobic sequencing batch reactor (AnSBR) operating with high organic loadings are scarce. This study aimed to contribute to the technical and scientific literature by reporting the experience obtained when biodiesel wastewater was treated in an AnSBR applying organic loading rates (OLR) above those commonly used in batch reactor projects. For this, physicochemical and chromatographic analysis of the effluent were carried out. Further, the biomass was assessed chemically and morphologically, along with bacterial diversity characteristics. Supported by these analyses, the system performance was discussed in terms of COD remotion efficiency and buffering capacity. The AnSBR reached 10% of COD removal at the steady-state, which caused the biomass defragmentation and facilitated washout. This suggests that the startup and operation of AnSBR under optimized conditions with an average applied OLR of 11.3 g L d worked as a pressure for the microbiota selection, stimulating the production of total volatile acids, which promoted system reduction efficiency and souring. In this context, food/microorganism ratios above 1.0 g g d can favor acidogenic activity, and total volatile acids/bicarbonate alkalinity concentration ratios above 1.9 may indicate acidification. The addition of support material for immobilizing/increasing biomass retention and/or operation under two-stage may be interesting alternatives for increasing AnSBR efficiencies under high OLRs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9672234PMC
http://dx.doi.org/10.1007/s40201-022-00819-wDOI Listing

Publication Analysis

Top Keywords

batch reactor
12
performance anaerobic
8
anaerobic sequencing
8
sequencing batch
8
operating high
8
high organic
8
organic loading
8
biodiesel wastewater
8
total volatile
8
ansbr
5

Similar Publications

Continuous flow solvent-free and catalyst-free mechanochemical production of rhodamine B dyes and their derivatives.

Chem Commun (Camb)

January 2025

Chemical Engineering & Process Development, CSIR-National Chemical Laboratory Pune, 411008, India.

In this communication, we have described a simple and efficient, catalyst free and solvent-free protocol for the continuous flow synthesis of rhodamine B dyes developed from 3-diethyl amino phenol and phthalic anhydride. Nearly 95% conversion was achieved within 12 min using a jacketed single screw reactor. This method is further used for the synthesis of six derivatives with 70-84% yield, which can be compared to 85% yield from a 1-hour long batch synthesis involving a catalyst.

View Article and Find Full Text PDF

The hydrolysis of proteins by proteases (proteolysis) plays a significant role in biology and food science. Despite the importance of proteolysis, a universal quantitative model of this phenomenon has not yet been created. This review considers approaches to modeling proteolysis in a batch reactor that take into account differences in the hydrolysis of the individual peptide bonds, as well as the limited accessibility (masking) for the enzymes of some hydrolysis sites in the protein substrate.

View Article and Find Full Text PDF

The value of branched esters comes from the special properties they have in cold environments, which allow them to remain liquid over a wide range of temperatures. These properties make them useful for application in the cosmetic industry or as lubricant additives. This paper presents the studies carried out to ascertain the operational feasibility of the enzymatic esterification of 2-methylpentanoic acid (MPA) with 1,10-decanediol (DD), with the objective of obtaining a novel molecule: decane-1,10-diyl bis(2-methylpentanoate) (DDBMP).

View Article and Find Full Text PDF

Progress in Continuous Flow Synthesis of Hydrogen-Bonded Organic Framework Material Synthons.

Molecules

December 2024

Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.

Hydrogen-bonded organic framework (HOF) materials are typically formed by the self-assembly of small organic units (synthons) with specific functional groups through hydrogen bonding or other interactions. HOF is commonly used as an electrolyte for batteries. Well-designed HOF materials can enhance the proton exchange rate, thereby boosting battery performance.

View Article and Find Full Text PDF

Aging of Polystyrene Micro/Nanoplastics Enhances Cephalosporin Phototransformation via Structure-Sensitive Interfacial Hydrogen Bonding.

Environ Sci Technol

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China.

Beyond their roles in adsorbing and transporting pollutants, microplastics (MPs) and nanoplastics (NPs), particularly polystyrene variants (PS-M/NPs), have emerged as potential accelerators for the transformation of coexisting contaminants. This study uncovered a novel environmental phenomenon induced by aged PS-M/NPs and delved into the underlying mechanisms. Our findings revealed that the aged PS-M/NP particles significantly amplified the photodegradation of common cephalosporin antibiotics, and the extent of enhancement was tightly correlated to the molecular structures of cephalosporin antibiotics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!