In recent decades, organ-on-chip devices have gained substantial interest as an alternative for studying the pathophysiological processes relevant to drug screening. Micropumps are being utilized to simulate the in vivo physiological fluid flow more realistically in these organ-on-chip devices. Micropumps play a crucial role in pumping, perfusion, and circulation of fluids in various microdevices such as on-chip PCR, DNA microarrays, miniature bioreactor cell separation, and lab-on-chip biosensing platforms. With the rapid growth in technology, efficient pumping for proper circulation of media and nutrients has become imperative. In this study, we have described the design and development of an open-source impedance micropump for continuous perfusion of nutrient medium in a liver-on-chip prototype. This micropump is controlled via an integrated microcontroller board, with an observed flow rate ranging from 0.2 to 2 mL/min. Google Sketchup 2020 and DLP 3D printing were used to fabricate small precise parts of the impedance micropump. The flow rate was measured to characterize the actuating performance of the micropump. The poly-dimethyl siloxane-based liver-on-chip prototype has been fabricated using a soft photolithography procedure. Further, a study of continuous perfusion of culture medium through the liver-on-chip containing the Hepg2 cell line was successfully performed by integrating it with the impedance micropump. Hoechst staining and Alamar Blue observed cell viability to confirm the healthy cell growth inside the liver-on-chip microfluidic chip. The compactness of the overall setup allows it to fit in a Petri plate, eliminating chances of contamination while cell handling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9670287 | PMC |
http://dx.doi.org/10.1021/acsomega.2c03818 | DOI Listing |
ACS Omega
November 2022
Department of Chemistry, Allahabad University, Prayagraj, Uttar Pradesh211002, India.
In recent decades, organ-on-chip devices have gained substantial interest as an alternative for studying the pathophysiological processes relevant to drug screening. Micropumps are being utilized to simulate the in vivo physiological fluid flow more realistically in these organ-on-chip devices. Micropumps play a crucial role in pumping, perfusion, and circulation of fluids in various microdevices such as on-chip PCR, DNA microarrays, miniature bioreactor cell separation, and lab-on-chip biosensing platforms.
View Article and Find Full Text PDFElectrophoresis
November 2022
Department of Electrical and Computer Engineering, The University of Texas Rio Grande Valley, Edinburg, Texas, USA.
Although there exist tremendous needs for on-chip biofluid delivery, research in this field has yielded limited numbers of devices for real-world applications. One challenge is the difficulty for micropumps to meet the requirements of being low cost to fabricate, easy to integrate and effective for intended applications at the same time. This research focuses on AC electrothermal (ACET) micropumps based on planar interdigitated electrodes, due to their practicality in fabrication and operation, and compatibility with biochemical fluids.
View Article and Find Full Text PDFCurr Opin Otolaryngol Head Neck Surg
October 2020
Microsystems Engineering, Rochester Institute of Technology, Rochester, New York, USA.
Purpose Of Review: Treatment of auditory dysfunction is dependent on inner ear drug delivery, with microtechnologies playing an increasingly important role in cochlear access and pharmacokinetic profile control. This review examines recent developments in the field for clinical and animal research environments.
Recent Findings: Micropump technologies are being developed for dynamic control of flow rates with refillable reservoirs enabling timed delivery of multiple agents for protection or regeneration therapies.
Sensors (Basel)
September 2018
School of Electrical and Electronics Engineering, College of Engineering, Chung-Ang University, Seoul 156-756, Korea.
This paper proposes a microfluidic impedance tuner that is applied to a planar inverted-F antenna (PIFA). The proposed microfluidic impedance tuner is designed while using a simple double-stub and the impedance is changed by tuning the stub length. In this work, the stub length can be tuned by injecting a liquid metal alloy to the microfluidic channels.
View Article and Find Full Text PDFTechnology (Singap World Sci)
March 2018
Department of Biomedical Engineering, Rutgers University, 599, Taylor Road, Piscataway, NJ 08854.
Flow cytometry is an invaluable tool utilized in modern biomedical research and clinical applications requiring high throughput, high resolution particle analysis for cytometric characterization and/or sorting of cells and particles as well as for analyzing results from immunocytometric assays. In recent years, research has focused on developing microfluidic flow cytometers with the motivation of creating smaller, less expensive, simpler, and more autonomous alternatives to conventional flow cytometers. These devices could ideally be highly portable, easy to operate without extensive user training, and utilized for research purposes and/or point-of-care diagnostics especially in limited resource facilities or locations requiring on-site analyses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!