AI Article Synopsis

Article Abstract

l-Asparaginase catalyzes the hydrolysis of l-asparagine to aspartic acid and ammonia and is used in the medical and food industries. In this investigation, from the proteomes of 176 archaeal organisms (with completely sequenced genomes), 116 homologs of l-asparaginase were obtained from 86 archaeal organisms segregated into Asp1, Asp2, IaaA, Asp2like1, and Asp2like2 families based on the conserved domain. The similarities and differences in the structure of selected representatives from each family are discussed. From the two novel archaeal l-asparaginase families Asp2like1 and Asp2like2, a representative of Asp2like1 family asparaginase (PtAsp2like1) was characterized in detail to find its suitability in therapeutics. PtAsp2like1 was a glutaminase-free asparaginase that showed the optimum activity at 80 °C and pH 10.0. The Km of PtAsp2like1 toward substrate l-asparagine was 11.69 mM. This study demonstrates the improved mapping of asparaginases in the archaeal domain, facilitating future focused research on archaeal asparaginases for therapeutic applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9670692PMC
http://dx.doi.org/10.1021/acsomega.2c01127DOI Listing

Publication Analysis

Top Keywords

l-asparaginase archaeal
8
archaeal domain
8
archaeal organisms
8
asp2like1 asp2like2
8
archaeal
6
insights distribution
4
distribution functional
4
functional properties
4
l-asparaginase
4
properties l-asparaginase
4

Similar Publications

Heterologous expression of a highly thermostable L-asparaginase from Thermococcus zilligii in Aspergillus niger for efficient reduction of acrylamide in French fries.

Int J Biol Macromol

January 2025

Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China. Electronic address:

L-asparaginase (L-ASNase) can hydrolyze L-asparagine, a precursor to acrylamide, thereby reducing toxic acrylamide formation in fried foods. Currently, commercial L-ASNases are primarily produced by wild-type (WT) filamentous fungi; however, these enzymes often exhibit rapid activity loss during high-temperature processing due to limited thermal stability. In this study, we screened a thermostable L-ASNase gene from thermophile bacteria and expressed it in Aspergillus niger to reduce acrylamide content in French fries.

View Article and Find Full Text PDF

Identification of a thermostable L-asparaginase from Pyrococcus yayanosii CH1 and its application in the reduction of acrylamide.

Extremophiles

September 2024

State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.

L-asparaginase (ASNase, E.C. 3.

View Article and Find Full Text PDF

This study investigated the effect of polycationic and uncharged polymers (and oligomers) on the catalytic parameters and thermostability of L-asparaginase from (TsA). This enzyme has potential applications in the food industry to decrease the formation of carcinogenic acrylamide during the processing of carbohydrate-containing products. Conjugation with the polyamines polyethylenimine and spermine (PEI and Spm) or polyethylene glycol (PEG) did not significantly affect the secondary structure of the enzyme.

View Article and Find Full Text PDF

l-Asparaginase catalyzes the hydrolysis of l-asparagine to aspartic acid and ammonia and is used in the medical and food industries. In this investigation, from the proteomes of 176 archaeal organisms (with completely sequenced genomes), 116 homologs of l-asparaginase were obtained from 86 archaeal organisms segregated into Asp1, Asp2, IaaA, Asp2like1, and Asp2like2 families based on the conserved domain. The similarities and differences in the structure of selected representatives from each family are discussed.

View Article and Find Full Text PDF

Background: L-asparaginase II (asnB), a periplasmic protein commercially extracted from E coli and Erwinia, is often used to treat acute lymphoblastic leukemia. L-asparaginase is an enzyme that converts L-asparagine to aspartic acid and ammonia. Cancer cells are dependent on asparagine from other sources for growth, and when these cells are deprived of asparagine by the action of the enzyme, the cancer cells selectively die.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!