A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An automated multi-web platform voting framework to predict misleading information proliferated during COVID-19 outbreak using ensemble method. | LitMetric

The spreading of misleading information on social web platforms has fuelled massive panic and confusion among the public regarding the Corona disease, the detection of which is of paramount importance. Previous studies mainly relied on a specific web platform to collect crucial evidence to detect fake content. The analysis identifies that retrieving clues from two or more different sources/web platforms gives more reliable prediction and confidence concerning a specific claim. This study proposed a novel multi-web platform voting framework that incorporates 4 sets of novel features: content, linguistic, similarity, and sentiments. The features have been gathered from each web-platforms to validate the news. To validate the fact/claim, a unique source platform is designed to collect relevant clues/headlines from two web platforms (YouTube, Google) based on specific queries and extracted features concerning each clue/headline. The proposed idea is to incorporate a unique platform to assist researchers in gathering relevant and vital evidence from diverse web platforms. After evaluation and validation, it has been identified that the built model is quite intelligent, gives promising results, and effectively predicts misleading information. The model correctly detected about 98% of the COVID misinformation on the constraint Covid-19 fake news dataset. Furthermore, it is observed that it is efficient to gather clues from multiple web platforms for more reliable predictions to validate the news. The suggested work depicts numerous practical applications for health policy-makers and practitioners that could be useful in safeguarding and implicating awareness among society from misleading information dissemination during this pandemic.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9650682PMC
http://dx.doi.org/10.1016/j.datak.2022.102103DOI Listing

Publication Analysis

Top Keywords

web platforms
16
multi-web platform
8
platform voting
8
voting framework
8
platforms reliable
8
validate news
8
platform
5
web
5
platforms
5
automated multi-web
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!