Insecticide-treated net (ITN) is the most applicable and cost-effective malaria intervention measure in sub-Saharan Africa and elsewhere. Although ITNs have been widely distributed to malaria-endemic regions in the past, their success has been threatened by misuses (in fishing, agriculture etc.) and decay in ITN efficacy. Decision-making in using the ITNs depends on multiple coevolving factors: malaria prevalence, mosquito density, ITN availability and its efficacy, and other socio-economic determinants. While ITN misuse increases as the efficacy of ITNs declines, high efficacy also impedes proper use due to free-riding. This irrational usage leads to increased malaria prevalence, thereby worsening malaria control efforts. It also remains unclear if the optimum ITN use for malaria elimination can be achieved under such an adaptive social learning process. Here, we incorporate evolutionary game theory into a disease transmission model to demonstrate these behavioural interactions and their impact on malaria prevalence. We show that social optimum usage is a function of transmission potential, ITN efficacy and mosquito demography. Under specific parameter regimes, our model exhibits patterns of ITN usage similar to observed data from parts of Africa. Our study suggests that the provision of financial incentives as prompt feedback to improper ITN use can reduce misuse and contribute positively towards malaria elimination efforts in Africa and elsewhere.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9667140 | PMC |
http://dx.doi.org/10.1098/rsos.220685 | DOI Listing |
Diagn Microbiol Infect Dis
December 2024
Department of Molecular Epidemiology, National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India. Electronic address:
Microsatellites, or simple sequence repeats (SSRs), are short tandemly repeated DNA sequences widely dispersed throughout the genome. Their high variability, co-dominant inheritance, and ease of detection make them valuable genetic markers, frequently used to study genetic diversity, population structure, and evolutionary processes. In the context of malaria research, particularly with Plasmodium falciparum (P.
View Article and Find Full Text PDFCharacterization of serological responses to Plasmodium falciparum (Pf) is of interest to understand disease burden and transmission dynamics; however, their interpretation is challenging. Dried blood spots from 30,815 participants aged 6 months to 15 years from the 2018 Nigeria HIV/AIDS Indicator and Impact Survey were analyzed by multiplex bead-based assay to measure immunoglobulin G (IgG) to Pf-stage-specific MSP-1, AMA-1, GLURPR0, LSA-1, and CSP. These IgG levels were analyzed by principal component analysis (PCA).
View Article and Find Full Text PDFAppl Microbiol Biotechnol
December 2024
Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.
Malaria, a parasitic disease caused by Plasmodium spp. and transmitted by Anopheles mosquitoes, remains a major global health issue, with an estimated 249 million cases and 608,000 deaths in 2022. Rapid and accurate diagnosis and treatment are crucial for malaria control and elimination.
View Article and Find Full Text PDFTrop Med Infect Dis
December 2024
Pan African Vivax and Ovale Network, Faculty of Computer and Allied Health Sciences, Regent University College of Science and Technology, McCarthy Hill, Accra P.O. Box DS1636, Ghana.
PAVON has developed a malaria microscopy competency training scheme to augment competency in malaria microscopy. Here, data accrued from training activities between 2020 and 2023 in Botswana are presented. Three trainings were done for 37 central and peripheral level technicians for a two-week period.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!