Background: The effects of T-cell immunoglobulin mucin molecule-3 (Tim-3), transforming growth factor β (TGF-β), and chemokine-12 (CXCL12) expression on the prognosis of patients with diffuse large B-cell lymphoma (DLBCL) have not been elucidated.

Aim: To examine the correlation between Tim-3, TGF-β and CXCL12 expression and DLBCL prognosis.

Methods: Lymph node tissues of 97 patients with DLBCL and 93 normal-response hyperplastic lymph node tissues treated from January 2017 to May 2019 were selected as the DLBCL and control groups, respectively. The expression of Tim-3, TGF-β, and CXCL12 was detected immunohistochemically. Patients were followed up for 3 years, and progression-free survival was recorded. Cox multifactorial analysis was performed to analyze the risk factors for poor prognosis.

Results: The positive expression rates of Tim-3, TGF-β, and CXCL12 were higher in DLBCL tissues than in non-cancerous (control) tissues ( < 0.05). One-year post-surgery, the positive expression rates of Tim-3, TGF-β, and CXCL12 were higher in patients with effective treatment than in those with ineffective treatment ( < 0.05). The 3-year progression-free survival of 97 patients with DLBCL was 67.01% (65/97). Univariate analysis revealed that clinical stage, bone marrow infiltration, International Prognostic Index (IPI) score, Tim-3 positivity, TGF-β positivity, and CXCL12 positivity were associated with poor prognosis ( < 0.05). Multivariate Cox regression analysis demonstrated that clinical stage III-IV, bone marrow infiltration, mediate-to-high-risk IPI scores, Tim-3 positivity, TGF-β positivity, and CXCL12 positivity were independent risk factors affecting prognosis ( < 0.05).

Conclusion: DLBCL tissues exhibit high positive expression of Tim-3, TGF-β, and CXCL12, and a high expression of all three indicates a poor prognosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9669877PMC
http://dx.doi.org/10.12998/wjcc.v10.i32.11804DOI Listing

Publication Analysis

Top Keywords

tim-3 tgf-β
20
tgf-β cxcl12
20
positive expression
12
t-cell immunoglobulin
8
immunoglobulin mucin
8
mucin molecule-3
8
growth factor
8
diffuse large
8
large b-cell
8
b-cell lymphoma
8

Similar Publications

Staphylococcus aureus prosthetic joint infections (PJIs) are broadly considered incurable, and clinical diagnostics that guide conservative vs. aggressive surgical treatments do not exist. Multi-omics studies in a humanized NSG-SGM3 BLT mouse model demonstrate human T cells: 1) are remarkably heterogenous in gene expression and numbers, and 2) exist as a mixed population of activated, progenitor-exhausted, and terminally-exhausted Th1/Th17 cells with increased expression of immune checkpoint proteins (LAG3, TIM-3).

View Article and Find Full Text PDF

Background: Special AT-rich binding protein-2 (SATB2) is a nuclear matrix associated protein regulating gene expression which is normally expressed in colonic tissue. Loss of SATB2 expression in colorectal cancer (CRC) has negative implications for prognosis and has been associated with chemotherapy resistance. Furthermore, recent evidence suggests SATB2 may influence immune checkpoint (IC) expression.

View Article and Find Full Text PDF

Involvement of Tim-3 in Maternal-fetal Tolerance: A Review of Current Understanding.

Int J Biol Sci

January 2025

Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China.

As the first T cell immunoglobulin mucin (Tim) family member to be identified, Tim-3 is a powerful immune checkpoint that functions in immunoregulation and induction of tolerance. Conventionally, Tim-3 is considered to play a role in adaptive immunity, especially in helper T cell-mediated immune responses. As researches progress, Tim-3 has been detected in a wider range of cell types, modulating cell function through ligand-receptor interactions and other pathways.

View Article and Find Full Text PDF

Background: The transmembrane protein T-cell immunoglobulin and mucin-domain containing molecule 3 (TIM-3) is an immune checkpoint receptor that is expressed by a variety of leukocyte subsets, particularly in the tumor microenvironment. An effective TIM-3-targeting therapy should account for multiple biological factors, including the disease setting, the specific cell types involved and their varying sensitivities to the four putative TIM-3 ligands (galectin-9, phosphatidylserine, high mobility group protein B1 and carcinoembryonic antigen cell adhesion molecule 1), each of which engages a unique binding site on the receptor's variable immunoglobulin domain. The primary objectives of this study were to assess the prevalence and function of TIM-3 natural killer (NK) cells in patients with head and neck squamous cell carcinoma (HNSCC), determine whether the four TIM-3 ligands differentially affect TIM-3 NK cell functions, identify the most immunosuppressive ligand, and evaluate whether targeting ligand-mediated TIM-3 signaling enhances NK cell effector functions.

View Article and Find Full Text PDF

Head and neck squamous cell carcinomas (HNSCC) have an overall poor prognosis, especially in locally advanced and metastatic stages. In most cases, multimodal therapeutic approaches are required and show only limited cure rates with a high risk of tumor recurrence. Anti-PD-1 antibody treatment was recently approved for recurrent and metastatic cases but to date, response rates remain lower than 25%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!