Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Radiation therapy damages tumors and normal tissues, probably in part through the recruitment of immune cells. Endothelial high-mannose N-glycans are, in particular, involved in monocyte-endothelium interactions. Trimmed by the class I α-mannosidases, these structures are quite rare in normal conditions. Here, we show that the expression of the endothelial α-mannosidase MAN1C1 protein decreases after irradiation. We modeled two crucial steps in monocyte recruitment by developing real-time imaging models. Inhibition of MAN1C1 expression by siRNA gene silencing increases the abundance of high-mannose N-glycans, improves the adhesion of monocytes on endothelial cells in flow conditions and, in contrast, decreases radiation-induced transendothelial migration of monocytes. Consistently, overexpression of MAN1C1 in endothelial cells using lentiviral vectors decreases the abundance of high-mannose N-glycans and monocyte adhesion and enhances transendothelial migration of monocytes. Hence, we propose a role for endothelial MAN1C1 in the recruitment of monocytes, particularly in the adhesion step to the endothelium.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9668741 | PMC |
http://dx.doi.org/10.1016/j.isci.2022.105482 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!