Thermo-sensitive Sacrificial Microsphere-based Bioink for Centimeter-scale Tissue with Angiogenesis.

Int J Bioprint

State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China.

Published: August 2022

Centimeter-scale tissue with angiogenesis has become more and more significant in organ regeneration and drug screening. However, traditional bioink has obvious limitations such as balance of nutrient supporting, printability, and vascularization. Here, with "secondary bioprinting" of printed microspheres, an innovative bioink system was proposed, in which the thermo-crosslinked sacrificial gelatin microspheres encapsulating human umbilical vein endothelial cells (HUVECs) printed by electrospraying serve as auxiliary component while gelatin methacryloyl precursor solution mixed with subject cells serve as subject component. Benefiting from the reversible thermo-crosslinking feature, gelatin microspheres would experience solid-liquid conversion during 37°C culturing and form controllable porous nutrient network for promoting the nutrient/oxygen delivery in large-scale tissue and accelerate the functionalization of the encapsulated cells. Meanwhile, the encapsulated HUVECs would be released and attach to the pore boundary, which would further form three-dimensional vessel network inside the tissue with suitable inducing conditions. As an example, vascularized breast tumor tissue over 1 cm was successfully built and the HUVECs showed obvious sprout inside, which indicate the great potential of this bioink system in various biomedical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9668484PMC
http://dx.doi.org/10.18063/ijb.v8i4.599DOI Listing

Publication Analysis

Top Keywords

centimeter-scale tissue
8
tissue angiogenesis
8
bioink system
8
gelatin microspheres
8
tissue
5
thermo-sensitive sacrificial
4
sacrificial microsphere-based
4
bioink
4
microsphere-based bioink
4
bioink centimeter-scale
4

Similar Publications

Volumetric bioprinting of the osteoid niche.

Biofabrication

January 2025

Polymer Chemistry and Biomaterials (PBM) Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281, Building S4, 9000 Ghent, Belgium.

Volumetric bioprinting has revolutionized the field of biofabrication by enabling the creation of cubic centimeter-scale living constructs at faster printing times (in the order of seconds). However, a key challenge remains: developing a wider variety of available osteogenic bioinks that allow osteogenic maturation of the encapsulated cells within the construct. Herein, the bioink exploiting a step-growth mechanism (norbornene-norbornene functionalized gelatin in combination with thiolated gelatin-GelNBNBSH) outperformed the bioink exploiting a chain-growth mechanism (gelatin methacryloyl-GelMA), as the necessary photo-initiator concentration was three times lower combined with a more than 50% reduction in required light exposure dose resulting in an improved positive and negative resolution.

View Article and Find Full Text PDF

Skin layer-specific spatiotemporal assessment of micrometabolism during wound angiogenesis.

Commun Biol

December 2024

Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, 8057, Zurich, Switzerland.

Proper oxygen delivery through the microvasculature to injury site is essential to ensure the metabolic cascade during wound healing. Adaptation of vascular structure and oxygenation is key to unravel the regulation of blood perfusion, oxygen distribution and new tissue formation. Yet, visualizing micrometabolic responses at large scale in unperturbed living tissue remains challenging.

View Article and Find Full Text PDF

Controlled aggregative assembly to form self-organizing macroscopic human intestine from induced pluripotent stem cells.

Cell Rep Methods

December 2024

Department of Gastroenterology and Hepatology, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan. Electronic address:

Human intestinal organoids (HIOs) derived from human pluripotent stem cells (hPSCs) are promising resources for intestinal regenerative therapy as they recapitulate both endodermal and mesodermal components of the intestine. However, due to their hPSC-line-dependent mesenchymal development and spherical morphology, HIOs have limited applicability beyond basic research and development. Here, we demonstrate the incorporation of separately differentiated mesodermal and mid/hindgut cells into assembled spheroids to stabilize mesenchymal growth in HIOs.

View Article and Find Full Text PDF

Multimodal single cell-resolved spatial proteomics reveal pancreatic tumor heterogeneity.

Nat Commun

November 2024

State Key Laboratory of Medical Proteomics and Shenzhen Key Laboratory of Functional Proteomics, Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China.

Despite the advances in antibody-guided cell typing and mass spectrometry-based proteomics, their integration is hindered by challenges for processing rare cells in the heterogeneous tissue context. Here, we introduce Spatial and Cell-type Proteomics (SCPro), which combines multiplexed imaging and flow cytometry with ion exchange-based protein aggregation capture technology to characterize spatial proteome heterogeneity with single-cell resolution. The SCPro is employed to explore the pancreatic tumor microenvironment and reveals the spatial alternations of over 5000 proteins by automatically dissecting up to 100 single cells guided by multi-color imaging of centimeter-scale formalin-fixed, paraffin-embedded tissue slide.

View Article and Find Full Text PDF

Micro-CT imaging is a powerful tool for generating high-resolution, isotropic, three-dimensional datasets of whole, centimeter-scale model organisms. At histological resolutions, micro-CT can be used for whole-animal qualitative and quantitative characterization of tissue and organismal structure in health and disease. The small size, global freshwater distribution, wide range of cell size and structures of micron scale, and common use of Daphnia magna in toxicological and environmental studies make it an ideal model for demonstrating the potential power of micro-CT-enabled whole-organism phenotyping.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!