Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Phase-selective gelation of low molecular-weight photoresponsive organogelator possessing long aliphatic chain azobenzene sugar derivatives and its applications in the recycling of aromatic solvents and also the removal of cationic dyes is reported. Very low critical gelation concentration (CGC) in aromatic solvents implies that it acts as a very good gelator. The photoinduced gel-to-sol transition was attained by irradiation with UV light at 350 nm. These organogels work as a selective adsorbent for efficiently removing cationic dyes from individual aqueous dye solutions and in a mixture of cationic and anionic dye solutions show more than 95% removal within 12 h. These insights indicate that these sugar derivatives could be exploited in implementing smart materials for environmental remediation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2sm01367c | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!