A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

DRlinker: Deep Reinforcement Learning for Optimization in Fragment Linking Design. | LitMetric

Fragment-based drug discovery is a widely used strategy for drug design in both academic and pharmaceutical industries. Although fragments can be linked to generate candidate compounds by the latest deep generative models, generating linkers with specified attributes remains underdeveloped. In this study, we presented a novel framework, DRlinker, to control fragment linking toward compounds with given attributes through reinforcement learning. The method has been shown to be effective for many tasks from controlling the linker length and log , optimizing predicted bioactivity of compounds, to various multiobjective tasks. Specifically, our model successfully generated 91.0% and 93.9% of compounds complying with the desired linker length and log and improved the 7.5 pChEMBL value in bioactivity optimization. Finally, a quasi-scaffold-hopping study revealed that DRlinker could generate nearly 30% molecules with high 3D similarity but low 2D similarity to the lead inhibitor, demonstrating the benefits and applicability of DRlinker in actual fragment-based drug design.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jcim.2c00982DOI Listing

Publication Analysis

Top Keywords

reinforcement learning
8
fragment linking
8
fragment-based drug
8
drug design
8
linker length
8
length log
8
drlinker
4
drlinker deep
4
deep reinforcement
4
learning optimization
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!