AI Article Synopsis

  • The study investigates the relationship between PD-L1 levels and various biomarkers in different subtypes of breast cancer (BC) to improve therapeutic strategies.
  • It involved 301 Chinese patients with different BC subtypes, utilizing next-generation sequencing to identify genomic alterations and immunohistochemistry for PD-L1 expression analysis.
  • Key findings reveal that specific mutations vary by BC subtype, with a notable correlation between PD-L1 expression and other biomarkers, suggesting that these indicators could guide tailored treatments for patients with BC.

Article Abstract

Backgroud: There were limitations existing in programmed cell-death ligand 1 (PD-L1) as predictive biomarkers for breast cancer (BC), hence exploring the correlation between PD-L1 levels and other biomarkers in BC may become a very useful therapeutic clinical tool.

Methods: A total of 301 Chinese patients with different BC subtypes including 47 HR+/HER2+, 185 HR+/HER2-, 38 HR-/HER2+, and 31 triple-negative breast cancer (TNBC) were enrolled in our study. Next-generation sequencing based Yuansu450 gene panel was used for genomic alteration identification and PD-L1 expression was tested using immunohistochemistry.

Results: The most prevalent BC-related mutations were TP53 mutations, followed by mutations in PIK3CA, ERBB2, CDK12, and GATA3 in our Chinese cohort. We found that mutations DDR2 and MYCL were only mutated in HR-/HER2+ subtype, whereas H3-3A and NRAS mutations were only occurred in HR-/HER2- subtype. The percentage of patients with PD-L1-positive expression was higher in patients with HR-/HER2- mainly due to the percentage of PD-L1-high level. Mutational frequencies of TP53, MYC, FAT4, PBRM1, PREX2 were observed to have significant differences among patients with different BC subtypes based on PD-L1 levels. Moreover, a positive correlation was observed between TMB and PD-L1 level in HR+/HER2- subtype, and showed that the proportion of patients with high PD-L1 expression was higher than that of patients with low PD-L1 expression in the HR+/HER2- and HR+/HER2+ cohorts with high Ki67 expression.

Conclusions: The genomic alterations based on PD-L1 and other biomarkers of different cohorts may provide more possibilities for the treatment of BC with different subtypes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10028068PMC
http://dx.doi.org/10.1002/cam4.5314DOI Listing

Publication Analysis

Top Keywords

pd-l1 expression
16
breast cancer
12
pd-l1
9
genomic alteration
8
pd-l1 levels
8
patients subtypes
8
expression higher
8
higher patients
8
based pd-l1
8
patients
6

Similar Publications

The expression of BHLHE22 in endometrial carcinoma: Associations with mismatch repair protein expression status, tumor-infiltrating immune cells, programmed death-ligand 1 and clinical outcomes.

Taiwan J Obstet Gynecol

January 2025

Department of Pathology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan; Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan. Electronic address:

Objective: Endometrial cancer (EC) shows substantial heterogeneity in their immune microenvironment. BHLHE22 is consistently hypermethylated in EC and high expression of BHLHE22 is likely to be immunosuppressive in the tumor microenvironment. Herein, we evaluated expression of BHLHE22, programmed cell death ligand-1 (PD-L1), CD8, CD68 and mismatch repair proteins in EC.

View Article and Find Full Text PDF

Background: mRNA-based cancer vaccines show promise in triggering antitumour immune responses. To combine them with existing immunotherapies, the intratumoral immune microenvironment needs to be deeply characterised. Here, we test nanostructured lipid carriers (NLCs), the so-called Lipidots®, for delivering unmodified mRNA encoding Ovalbumin (OVA) antigen to elicit specific antitumour responses.

View Article and Find Full Text PDF

Heteronemin suppresses EGF‑induced proliferation through the PI3K/PD‑L1 signaling pathways in cholangiocarcinoma.

Oncol Rep

March 2025

Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan, R.O.C.

Epidermal growth factor (EGF) binds with its surface receptor to stimulate gene expression and cancer cell proliferation. EGF stimulates cancer cell growth via phosphoinositide 3‑kinase (PI3K) and programmed cell death ligand 1 (PD‑L1) pathways. As an integrin αvβ3 antagonist, heteronemin exhibits potent cytotoxic effects against cancer cells.

View Article and Find Full Text PDF

Canine oral melanoma (OM) exhibits poor prognosis and limited treatment options. The success of immune checkpoint inhibitors (ICIs) in human melanoma has driven interest in similar therapeutic approaches in the dog, although the immunosuppressive mechanisms adopted by canine OM remain unclear. This study aimed to evaluate the expression of the immune checkpoints PD-1/PD-L1 and CTLA-4 by RNAscope in situ hybridization (ISH) in canine OM, to investigate their expression pattern and explore their potential role in melanoma progression.

View Article and Find Full Text PDF

Nasopharyngeal carcinoma (NPC) is a prevalent malignancy in China, commonly associated with undifferentiated cell types and Epstein-Barr virus (EBV) infection. The presence of intense lymphocytic infiltration and elevated expression of programmed cell death ligand 1(PD-L1) in NPC highlights its potential for immunotherapy, yet current treatment outcomes remain suboptimal. In this review, we explore the tumor microenvironment of NPC to better understand the mechanisms of resistance to immunotherapy, evaluate current therapeutic strategies, and pinpoint emerging targets, such as tertiary lymphoid structures (TLSs), that could enhance treatment outcomes and prognostic accuracy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!