Determination of virtual source position using back projecting zero and convergent arcTAN method for scanning-passive scatter beam in carbon ion therapy.

J Xray Sci Technol

Heavy Ion Center of Wuwei Cancer Hospital; Gansu Wuwei Academy of Medical Sciences, Gansu Wuwei Tumor Hospital, Wuwei City, Gansu Province, China.

Published: January 2023

Objective: This study aims to develop and test a new technique by using the convergent arcTAN (cATAN) method capable of dealing with the virtual source position delivered by different carbon ion energies from the pattern of scanning-passive scatter beam.

Materials And Methods: A homemade large-format CMOS sensor and Gaf Chromic EBT3 films are used for the virtual source position measurement. The Gaf films are embedded in a self-designed rectangular plastic frame to tighten films and set up on a treatment couch for irradiation in air with the film perpendicular to the carbon ion beam at the nominal source-axis-distance (SAD) as well as upstream and downstream from the SAD. The horizontal carbon ion beam with 5 energies at a machine opening field size is carried out in this study. The virtual source position is determined by using the convergent arcTAN (cATAN) method and compared with a linear regression by back projecting FWHM to zero at a distance upstream from the various source-film-distance.

Results: The film FWHM measurement error of 0.5 mm leads to 0.001% deviation of α (cATAN) at every assumed textend. The overall uncertainty for the reproducibility of calculated virtual source position by the assumed textend in the vertical and horizontal directions amounts to 0.1%. The errors of calculated virtual source position by assumed textend with back projecting FWHM to zero methods are within 1.1±0.001, p = 0.033.

Conclusion: We develop a new technique capable of dealing with the virtual source position with a convergent arcTAN method to avoid any manual measurement mistakes in scanning-passive scatter carbon ion beam. The readers are encouraged to conduct the proposed cATAN method in this study to investigate the virtual source position in the Linac-based external electron beams and the proton beams.

Download full-text PDF

Source
http://dx.doi.org/10.3233/XST-221274DOI Listing

Publication Analysis

Top Keywords

virtual source
32
source position
32
carbon ion
20
convergent arctan
16
scanning-passive scatter
12
catan method
12
ion beam
12
assumed textend
12
source
8
position
8

Similar Publications

Advanced control strategy for AC microgrids: a hybrid ANN-based adaptive PI controller with droop control and virtual impedance technique.

Sci Rep

December 2024

Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, Kyiv, 03680, Ukraine.

In this paper, an improved voltage control strategy for microgrids (MG) is proposed, using an artificial neural network (ANN)-based adaptive proportional-integral (PI) controller combined with droop control and virtual impedance techniques (VIT). The control strategy is developed to improve voltage control, power sharing and total harmonic distortion (THD) reduction in the MG systems with renewable and distributed generation (DG) sources. The VIT is used to decouple active and reactive power, reduce negative power interactions between DG's and improve the robustness of the system under varying load and generation conditions.

View Article and Find Full Text PDF

Background: Cervical cancer is the second most common cancer among women in Nigeria where, the gap between need for, and access to, radiation therapy including brachytherapy is significant. This report documents the implementation of the first three-dimensional high-dose-rate (3D-HDR) brachytherapy service for cervical cancer in Nigeria.

Purpose: This report details the steps taken to implement the 3D-HDR brachytherapy program, the challenges faced, and the adaptive strategies employed to overcome them.

View Article and Find Full Text PDF

Integrated computational biophysics approach for drug discovery against Nipah virus.

Biochem Biophys Res Commun

December 2024

Laboratório de Modelagem Computacional - LaModel, Instituto de Ciências Exatas - ICEx, Universidade Federal de Alfenas UNIFAL-MG, 37133-840, Alfenas, Minas Gerais, Brazil. Electronic address:

The Nipah virus (NiV) poses a pressing global threat to public health due to its high mortality rate, multiple modes of transmission, and lack of effective treatments. NiV glycoprotein G (NiV-G) emerges as a promising target for the discovery of NiV drugs because of its essential role in viral entry and membrane fusion. Therefore, in this study, we applied an integrated computational and biophysics approach to identify potential inhibitors of NiV-G within a curated dataset of Peruvian phytochemicals.

View Article and Find Full Text PDF

In the field of computational chemistry, computer models are quickly and cheaply constructed to predict toxicology hazards and results, with no need for test material or animals as these computational predictions are often based on physicochemical properties of chemical structures. Multiple methodologies are employed to support in silico assessments based on machine learning (ML) and deep learning (DL). This review introduces the development of computational toxicology, focusing on ML and DL and emphasizing their importance in the field of toxicology.

View Article and Find Full Text PDF

In order to figure out the wall effect on the propulsive property of an auto-propelled foil, the commercial open-source code ANSYS Fluent was employed to numerically evaluate the fluid dynamics of flexible foil under various wall distances. A virtual model of NACA0015 foil undergoing travelling wavy motion was adopted, and the research object included 2D and 3D models. To capture the foil's moving boundary, the dynamic grid technique coupled with the overlapping grid was utilized to realize the foil's positive deformation and passive forward motion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!