Diverse inhibitory neurons in the mammalian brain shape circuit connectivity and dynamics through mechanisms of synaptic plasticity. Inhibitory plasticity can establish excitation/inhibition (E/I) balance, control neuronal firing, and affect local calcium concentration, hence regulating neuronal activity at the network, single neuron, and dendritic level. Computational models can synthesize multiple experimental results and provide insight into how inhibitory plasticity controls circuit dynamics and sculpts connectivity by identifying phenomenological learning rules amenable to mathematical analysis. We highlight recent studies on the role of inhibitory plasticity in modulating excitatory plasticity, forming structured networks underlying memory formation and recall, and implementing adaptive phenomena and novelty detection. We conclude with experimental and modeling progress on the role of interneuron-specific plasticity in circuit computation and context-dependent learning.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tins.2022.10.006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!