Liquid biopsy is a minimally invasive alternative to surgical biopsy, encompassing different analytes including extracellular vesicles (EVs), circulating tumour cells (CTCs), circulating tumour DNA (ctDNA), proteins, and metabolites. EVs are released by virtually all cells, but at a higher rate by faster cycling, malignant cells. They encapsulate cargo native to the originating cell and can thus provide a window into the tumour landscape. EVs are often analysed in bulk which hinders the analysis of rare, tumour-specific EV subpopulations from the large host EV background. Here, we fractionated EV subpopulations in vitro and in vivo and characterized their phenotype and generic cargo. We used 5-aminolevulinic acid (5-ALA) to induce release of endogenously fluorescent tumour-specific EVs (EV ). Analysis of five different subpopulations (EV , EV , EV , EV , EV ) from glioblastoma (GBM) cell lines revealed unique transcriptome profiles, with the EV transcriptome demonstrating closer alignment to tumorigenic processes over the other subpopulations. Similarly, isolation of tumour-specific EVs from GBM patient plasma showed enrichment in GBM-associated genes, when compared to bulk EVs from plasma. We propose that fractionation of EV populations facilitates detection and isolation of tumour-specific EVs for disease monitoring.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9676504PMC
http://dx.doi.org/10.1002/jev2.12278DOI Listing

Publication Analysis

Top Keywords

tumour-specific evs
12
5-aminolevulinic acid
8
circulating tumour
8
isolation tumour-specific
8
evs
7
subpopulations
5
glioblastoma-derived extracellular
4
extracellular vesicle
4
vesicle subpopulations
4
subpopulations 5-aminolevulinic
4

Similar Publications

Background: Esophageal squamous cell carcinoma (ESCC) is often diagnosed at an advanced stage due to the lack of non-invasive early detection tools, which significantly impacts patient prognosis. Given that glycosylation alterations especially high sialylation and fucosylation, frequently occur during cellular malignant transformation, but their roles are not elucidated. We examined alterations in disease-specific glycosylated extracellular vesicles (EVs)-derived miRNAs in the serum of ESCC patients, evaluating their utility as diagnostic biomarkers.

View Article and Find Full Text PDF

Cancer therapy is a dynamically evolving field, witnessing the emergence of innovative approaches that offer a promising outlook for patients grappling with persistent disease. Within the realm of therapeutic exploration, chimeric antigen receptor (CAR) T cells as well as CAR NK cells, have surfaced as novel approaches, each possessing unique attributes and transformative potential. Immune cells engineered to express CARs recognizing tumour-specific antigens, have shown remarkable promise in treating terminal cancers by combining the precision of antibody specificity with the potent cytotoxic function of T cells.

View Article and Find Full Text PDF

Liquid biopsy is a minimally invasive alternative to surgical biopsy, encompassing different analytes including extracellular vesicles (EVs), circulating tumour cells (CTCs), circulating tumour DNA (ctDNA), proteins, and metabolites. EVs are released by virtually all cells, but at a higher rate by faster cycling, malignant cells. They encapsulate cargo native to the originating cell and can thus provide a window into the tumour landscape.

View Article and Find Full Text PDF

Detection of cell-free circulating tumour DNA (ctDNA) and cancer-specific extracellular vesicles (EVs) in patient blood have been widely explored as non-invasive biomarkers for cancer detection and disease follow up. However, most of the protocols used to isolate EVs co-isolate other components and the actual value of EV-associated markers remain unclear. To determine the optimal source of clinically-relevant circulating biomarkers in breast cancer, we applied a size exclusion chromatography (SEC) procedure to analyse separately the content in nucleic acids of EV-enriched and EV-depleted fractions, in comparison to total plasma.

View Article and Find Full Text PDF

Diagnosis of glioblastoma (GBM) poses a recurring struggle due to many factors, including the presence of the blood-brain barrier (BBB) in addition to the significant tumor heterogeneity. Natural killer (NK) cells of the innate immune system are the primary immune surveillance mechanism for GBM and identify GBM tumors without any previous sensitization. The metabolic reprogramming of NK cells during GBM association is expected to be reflected in its extracellular vesicles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!