Recently discovered transcription-independent features of p53 involve the choice of DNA damage repair pathway after PARylation, and p53's complex formation with phosphoinositide lipids, PI(4,5)P . PARylation-mediated rapid accumulation of p53 at DNA damage sites is linked to the recruitment of downstream repair factors and tumor suppression. This links p53's capability to sense damaged DNA in vitro and its relevant functions in cells. Further, PI(4,5)P rapidly accumulates at damage sites like p53 and complexes with p53, while it is required for ATR recruitment. These findings help explain how p53 and PI(4,5)P maintain genome stability by directing DNA repair pathway choice. Additionally, there is a strong correlation between p53 sequence homology, genome mutation rates as well as lifespans across various mammalian species. Further investigation is required to better understand the connections between genome stability, tumor suppression, longevity and the transcriptional-independent function of p53.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bies.202200122DOI Listing

Publication Analysis

Top Keywords

repair pathway
12
p53
8
p53 dna
8
dna repair
8
dna damage
8
damage sites
8
tumor suppression
8
genome stability
8
dna
5
transcription-independent functions
4

Similar Publications

Introduction: In genetically predisposed individuals, exposure to aeroallergens and infections from RNA viruses shape epithelial barrier function, leading to Allergic Asthma (AA). Here, activated pattern recognition receptors (PRRs) in lower airway sentinel cells signal epithelial injury-repair pathways leading to cell-state changes [epithelial mesenchymal plasticity (EMP)], barrier disruption and sensitization.

Areas Covered: 1.

View Article and Find Full Text PDF

G9a/GLP Modulators: Inhibitors to Degraders.

J Med Chem

January 2025

SANKEN, Osaka University, Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan.

Histone methylation, a crucial aspect of epigenetics, intricately involves specialized enzymes such as G9a, a histone methyltransferase (HMT) catalyzing the methylation of histone H3 lysine 9 (H3K9) and H3K27. Apart from histone modification, G9a regulates essential cellular processes such as deoxyribonucleic acid (DNA) replication, damage repair, and gene expression via modulating DNA methylation patterns. The dysregulation and overexpression of G9a are intricately linked to cancer initiation, progression, and metastasis, making it a compelling target for anticancer therapy.

View Article and Find Full Text PDF

The tumor suppressor PALB2 is a key player in the Homologous Recombination (HR) pathway, functionally connecting BRCA proteins at the DNA damage site. PALB2 forms homodimers via its coiled-coil domain, and during HR, it forms a heterodimeric complex with BRCA1 using the same domain. However, the structural details of the human PALB2 coiled-coil domain are unknown.

View Article and Find Full Text PDF

Poststroke Ipsilesional Motor Performance: Microstructural Biomarkers and Their Associations With Executive Function.

Neurorehabil Neural Repair

January 2025

Department of Rehabilitation Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.

Background: Unilateral hemispheric stroke can impair the ipsilesional motor performance, which is crucial for attaining optimal functional outcomes poststroke. However, the specific brain structures contributing to ipsilesional motor performance impairment remain unclear.

Objective: To explore the link between ipsilesional motor performance and the microstructural integrity of relevant neural pathways.

View Article and Find Full Text PDF

APP lysine 612 lactylation ameliorates amyloid pathology and memory decline in Alzheimer's disease.

J Clin Invest

January 2025

Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.

Posttranslational modification (PTM) of the amyloid precursor protein (APP) plays a critical role in Alzheimer's disease (AD). Recent evidence reveals that lactylation modification, as a novel PTM, is implicated in the occurrence and development of AD. However, whether and how APP lactylation contributes to both the pathogenesis and cognitive function in AD remains unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!