In hydrogeological research, the systematic and periodic measurement of the piezometric level is fundamental to assess aquifer storage, identify recharge and discharge areas, define flow directions and to infer the balance between inputs and withdrawals. Furthermore, knowledge of this variable and its fluctuations is essential for the efficient management and protection of groundwater resources. In this work, a novel methodology is proposed for the remote acquisition of piezometric information from traditional large-diameter wells, using drone-borne LiDAR observations. The workflow developed consists of different stages, from flight planning and parameter setting, to point cloud generation, data processing and validation and its statistical treatment to extract piezometric information. This methodology has been applied in a small coastal aquifer with numerous wells that have served as monitoring points. The UAV-LiDAR has enabled the straightforward obtention of measurements of the piezometric level with very high vertical accuracies (RMSE of 5 cm) with minimum and maximum residuals of -8.7 and 7.9 cm respectively. Likewise, the method has shown vertical accuracies 3 times better than those inferred from the official DTM of best resolution available in Spain, which is usually used in hydrogeological works. Since the technique provides absolute values of the piezometric level, it eliminates the need for laborious levelling work prior to hydrogeological campaigns. This method has proved to be an effective alternative/complementary technique to traditional measurements of the piezometric level, allowing to monitor extensive or inaccessible areas over short periods of time and to potentially reduce gaps in hydrogeological databases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.160272 | DOI Listing |
Sci Total Environ
January 2025
Tecnológico Nacional de México/Campus Veracruz (UNIDA), Av. Miguel Angel de, Quevedo 2779, Col. Formando Hogar, 91897 Veracruz, Veracruz, Mexico. Electronic address:
This research investigates the interplay between groundwater flow systems and the zoning of wetland species. We aimed to elucidate the relationship between these factors through comprehensive field evaluations encompassing plant composition, piezometric levels, and flow direction; groundwater chemistry, vertical and horizontal, at different depths (0.15 m, 2 m, 4 m, and 6 m) during both rainy and dry seasons.
View Article and Find Full Text PDFSci Rep
October 2024
Department of Civil and Environmental Engineering (DECA), Universitat Politècnica de Catalunya (UPC), Barcelona, 08034, Spain.
Submarine Groundwater Discharge (SGD) is a major pathway for the discharge of fresh and saline groundwater and associated dissolved compounds into marine environments. However, assessing SGD processes in coastal aquifers is challenging due to inaccessibility, dynamic conditions, complex subsurface geology, and the need for long-term monitoring to capture temporal and spatial variations in SGD rates accurately. This study employs marine continuous resistivity profiling (MCRP) as a main method to assess the presence of freshwater or brackish SGD offshore and to examine its potential seasonal variations.
View Article and Find Full Text PDFSci Rep
October 2024
School of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
Currently, the alarm functions of existing levee seepage monitoring systems are limited to single-parameter monitoring and lack rate-of-change alarms and correlation alarms. This can lead to false alarms, missed alarms, equipment failures, or unnecessary downtime. To enhance the intelligence of levee safety monitoring and seepage alarms, a levee seepage intelligent alarm system based on a Bidirectional Long Short-Term Memory (BILSTM) network model was designed and implemented.
View Article and Find Full Text PDFSci Total Environ
October 2024
Water, Environmental and Agricultural Resources Economics (WEARE) Research Group, Department of Agricultural Economics, University of Cordoba, Campus Rabanales Building C5, 14014 Córdoba, Spain. Electronic address:
Axarquia is a semi-arid region in southern Spain that in the past 25 years has experienced significant population growth, along with an economic boom driven by an increasing influx of tourists to Costa del Sol and the expansion of irrigated export-oriented subtropical crops. The combination of these factors has led to a chronic structural scarcity condition that has been intensified by the occurrence of a long and extreme drought. As a result, its only reservoir has reached historically low levels and the piezometric levels in its main aquifer have decreased significantly, suggesting that groundwater reserves are being overexploited.
View Article and Find Full Text PDFJ Contam Hydrol
July 2024
Servicio de Prevención y Corrección de la Contaminación del Suelo, Dirección General de Calidad Ambiental, Departamento de Medio Ambiente y Turismo, Gobierno de Aragón. San pedro Nolasco, 7, 50071 Zaragoza, Spain.
The organic pollutants disposed at the Sardas landfill in Sabiñánigo (Huesca, northeastern Spain) by the INQUINOSA lindane factory have reached the Gállego alluvial aquifer and could affect the Sabiñánigo reservoir. The daily oscillations of the reservoir water level produce a tidal effect on the piezometric heads of the aquifer. These oscillations are transmitted in a damped way with a time lag, thus attesting that the silting sediments of the reservoir and the natural silts of the Gállego alluvial are interposed between the reservoir water and the layer of sands and gravels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!