Posidonia oceanica (L.) Delile is one of the most abundant aquatic vascular higher plants in the Mediterranean Sea belonging to Posidoniaceas family. It is considered as a valuable natural source for multiple uses either for ecological functions or industrial applications. Nevertheless, this marine phanerogam is commonly confused with macroalgae, or seaweeds, known also as cryptogams. The present note intends to discuss the mis-use of the associated terminology of P. oceanica as algae in the scientific literature in order to avoid the widespread of this issue in the future. Thus, an extensive assessment of some important published woks has been conducted. This note will certainly allow the accurate nomenclature of this promising endemic species, which will continue its valorizations' ascension in several potential applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2022.11.169 | DOI Listing |
Microb Ecol
January 2025
Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy.
Posidonia oceanica retains a large amount of carbon within its belowground recalcitrant structure, the 'matte,' which is characterized by low oxygen availability and biodegradation. Fungi may play a pivotal role in carbon sequestration within the matte, even if little/no information is available. To fill this gap, we profiled fungal communities from the upper and lower layers of alive and dead matte, by using an ITS2-5.
View Article and Find Full Text PDFMar Environ Res
December 2024
University of Sassari, Department of Chemical, Physical, Mathematical and Natural Sciences, Sassari, Italy; National Biodiversity Future Centre, Palermo, Italy.
Recovering seagrass ecosystems through restoration has become impellent to re-establish their functionality and services. Although the use of seedlings may represent an appropriate solution, little information is provided on the seedling-based restoration effectiveness with influence of biotic and abiotic interactions. Survival, morphological development and leaf total phenol content of transplanted Posidonia oceanica seedlings were evaluated under different origin, thermal regimes and herbivore pressure through a five-months field experiment in two MPAs, located on the west (cold) and east (warm) Sardinia coast to explore the effectiveness of seedling-based restoration.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy.
Anthropogenic pressures affect large stretches of Mediterranean coastal environments, determining alterations, including chemical pollution, able to impair ecosystem functioning and services. Among the pollutants of major concern for their toxicity and persistence, there are polycyclic aromatic hydrocarbons (PAHs), which can be effectively monitored through bioaccumulation approaches. However, the main biomonitor of PAHs in the Mediterranean Sea, Posidonia oceanica, is currently undergoing extensive regressions due to anthropogenic pressures, forcing the search for alternative biomonitors.
View Article and Find Full Text PDFMetabolites
December 2024
CNRS, Aix-Marseille University, Avignon University, IRD, UMR 7263 IMBE, 13397 Marseille, France.
Background/objectives: Biogenic volatile organic compounds (BVOCs), extensively studied in terrestrial plants with global emissions around 1 PgC yr, are also produced by marine organisms. However, benthic species, especially seagrasses, are understudied despite their global distribution (177,000-600,000 km). This study aims to examine BVOC emissions from key Mediterranean seagrass species (, , , and ) in marine and coastal lagoon environments.
View Article and Find Full Text PDFMar Pollut Bull
December 2024
Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece.
Plastic pollution in marine environments is of global concern, yet its distribution within seagrasses remains poorly understood. We explore the efficiency of Posidonia oceanica in trapping microplastics (MPs) across various components (leaves, rhizomes, sediment), examine their potential transfer through the food web and assess their dispersal using advanced modelling techniques. Field surveys confirm that P.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!