Plasmodium sporozoites travel a long way from the site where they are released by a mosquito bite to the liver, where they infect hepatocytes and develop into erythrocyte-invasive forms. The success of this infection depends on the ability of the sporozoites to correctly recognize the hepatocyte as a target and change their behavior from migration to infection. However, how this change is accomplished remains incompletely understood. In this paper, we report that 6-cysteine protein family members expressed in sporozoites including B9 are responsible for this ability. Experiments on parasites using double knockouts of B9 and SPECT2, which is essential for sporozoite to migrate through the hepatocyte, showed that the parasites lacked the capacity to stop migration. This finding suggests that interactions between these parasite proteins and hepatocyte-specific cell surface ligands mediate correct recognition of hepatocytes by sporozoites, which is an essential step in malaria transmission to humans.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.parint.2022.102700DOI Listing

Publication Analysis

Top Keywords

sporozoites
5
plasmodium 6-cysteine
4
6-cysteine proteins
4
proteins determine
4
determine commitment
4
commitment sporozoites
4
sporozoites liver-infection
4
liver-infection plasmodium
4
plasmodium sporozoites
4
sporozoites travel
4

Similar Publications

Research note: The critical role of the interaction between Eimeria tenella invasion protein RON2 and host receptor annexin A2 in mediating parasite invasion.

Poult Sci

December 2024

Guangdong Province Key Laboratory of Livestock Disease Prevention, Key Laboratory of Avian Infuenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Afairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China. Electronic address:

Avian coccidiosis, caused by protozoan parasites of the genus Eimeria, is a globally prevalent and highly pathogenic disease that poses a serious threat to the poultry industry, resulting in significant economic losses. However, the mechanism by which Eimeria species invade host cells remains unclear. Previous studies have identified rhoptry neck protein 2 (RON2) from Eimeria tenella as a critical factor in host cell invasion, but a comprehensive understanding of the role of EtRON2 in host cell invasion and its relationship with E.

View Article and Find Full Text PDF

The emergence of parasites partially resistant to artemisinins (ART-R) poses a significant threat to recent gains in malaria control. ART-R has been associated with PfKelch13 (K13) mutations, which differ in fitness costs. This study investigates the gametocyte production and transmission fitness of African and Asian isolates with different K13 genotypes across multiple mosquito species.

View Article and Find Full Text PDF

Isospora tiedetopetei n. sp. (Chromista: Apicomplexa: Eimeriidae) from black-goggled tanagers Trichothraupis melanops (Vieillot, 1818) (Passeriformes: Thraupidae: Tachyphoninae) in South America.

Parasitol Int

January 2025

Departamento de Biologia Animal, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, BR-465 km 7, 23897-000 Seropédica, Rio de Janeiro, Brazil.

Black-goggled tanagers Trichothraupis melanops (Vieillot, 1818) are passerine birds commonly observed in the Brazilian Atlantic Forest, Argentina and Paraguay. Tanagers are among the passerines with the highest prevalence and density of coccidian parasites, mainly due to their frugivorous feeding habits that favor fecal-oral transmission. In this context, the current study identifies a new species of Isospora Schneider, 1881 parasitizing black-goggled tanagers captured in the Itatiaia National Park, a protected area with a high degree of vulnerability in Southeastern Brazil.

View Article and Find Full Text PDF

Malaria vaccines consisting of metabolically active Plasmodium falciparum (Pf) sporozoites can offer improved protection compared with currently deployed subunit vaccines. In a previous study, we demonstrated the superior protective efficacy of a three-dose regimen of late-arresting genetically attenuated parasites administered by mosquito bite (GA2-MB) compared with early-arresting counterparts (GA1-MB) against a homologous controlled human malaria infection. Encouraged by these results, we explored the potency of a single GA2-MB immunization in a placebo-controlled randomized trial.

View Article and Find Full Text PDF

Background: The Lihir Islands of Papua New Guinea, located in an area with high burden of malaria and hosting a large mining operation, offer a unique opportunity to study transmission. There, we investigated human and vector factors influencing malaria transmission.

Methods: In 2019, a cross-sectional study was conducted on 2,914 individuals assessing malaria prevalence through rapid diagnostic tests (RDT), microscopy, and quantitative PCR (qPCR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!