Fatigue of hybrid fibre-reinforced plastics.

Philos Trans A Math Phys Eng Sci

Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, 3001 Leuven, Belgium.

Published: January 2023

Understanding the fatigue behaviour of hybrid fibre-reinforced plastics is desirable for exploiting their features in safe, durable and reliable industrial components. The fatigue performance of hybrid composites has not been extensively investigated yet. The paper presents an overview of the available knowledge on the fatigue of hybrid fibre-reinforced plastics, and, more specifically, reports the fatigue behaviour of a quasi-isotropic pseudo-ductile all-carbon fibre interlayer hybrid composite by experimental measurements and observations, with emphasis on the damage development. The fatigue conditions are tension-tension stress- and strain-controlled cyclic loading. The results include fatigue life for different maximum stress and strain levels, stiffness evolution and damage observations by X-ray micro-computed tomography. The studied hybrid all-carbon fibre quasi-isotropic composite exhibits pseudo-ductility in quasi-static testing. For stress-controlled fatigue, the fatigue load over the limit of elastic response is not sustained. Contrary to that, the composite retains its load-carrying ability in the pseudo-ductile regime for a strain-controlled regime, albeit with lowered stiffness. This article is part of the theme issue 'Ageing and durability of composite materials'.

Download full-text PDF

Source
http://dx.doi.org/10.1098/rsta.2021.0222DOI Listing

Publication Analysis

Top Keywords

hybrid fibre-reinforced
12
fibre-reinforced plastics
12
fatigue
9
fatigue hybrid
8
fatigue behaviour
8
all-carbon fibre
8
hybrid
5
plastics understanding
4
understanding fatigue
4
behaviour hybrid
4

Similar Publications

Experimental Study on Mechanical Performance of Single-Side Bonded Carbon Fibre-Reinforced Plywood for Wood-Based Structures.

Materials (Basel)

January 2025

Department of Integrated Design and Tribology Systems, Faculty of Mechanics and Technology, Rzeszów University of Technology, ul. Kwiatkowskiego 4, 37-450 Stalowa Wola, Poland.

In addition to the traditional uses of plywood, such as furniture and construction, it is also widely used in areas that benefit from its special combination of strength and lightness, particularly as a construction material for the production of finishing elements of campervans and yachts. In light of the current need to reduce emissions of climate-damaging gases such as CO, the use of lightweight construction materials is very important. In recent years, hybrid structures made of carbon fibre-reinforced plastics (CFRPs) and metals have attracted much attention in many industries.

View Article and Find Full Text PDF

The work evaluated the usage of various filler materials, namely aluminium oxide (AlO), magnesium (Mg), and glass powder, in the bidirectional glass fibre reinforced polymer (GFRP) composites. The required samples were fabricated using the hand lay-up technique by varying the filler material proportions from 0%wt. to 7.

View Article and Find Full Text PDF

Traditional inspection methods often fall short in detecting defects or damage in fibre-reinforced polymer (FRP) composite structures, which can compromise their performance and safety over time. A prime example is barely visible impact damage (BVID) caused by out-of-plane loadings such as indentation and low-velocity impact that can considerably reduce the residual strength. Therefore, developing advanced visual inspection techniques is essential for early detection of defects, enabling proactive maintenance and extending the lifespan of composite structures.

View Article and Find Full Text PDF

Investigation of Delamination Characteristics in 3D-Printed Hybrid Curved Composite Beams.

Polymers (Basel)

August 2024

Advanced Composites Research Group, School of Mechanical and Aerospace Engineering, Queen's University Belfast, Belfast BT9 5AH, UK.

This study focuses on understanding the impact of different material compositions and printing parameters on the structural integrity of hybrid curved composite beams. Using the continuous filament fabrication technique, which is an advanced fused deposition modelling process, composite curved beams made of short carbon and various continuous fibre-reinforced nylon laminae were fabricated and subjected to four-point bending tests to assess their delamination characteristics. The results show that the presence of five flat zones in the curved region of a curved beam achieves 10% and 6% increases in maximum load and delamination strength, respectively, against a smooth curved region.

View Article and Find Full Text PDF

The use of hybrid fibre-reinforced Self-compacting concrete (HFR-SCC) has escalated recently due to its significant advantages in contrast to normal concrete such as increased ductility, crack resistance, and eliminating the need for compaction etc. The process of determining residual strength properties of HFR-SCC after a fire event requires rigorous experimental work and extensive resources. Thus, this study presents a novel approach to develop equations for reliable prediction of compressive strength (cs) and flexural strength (fs) of HFR-SCC using gene expression programming (GEP) algorithm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!