Context: The destruction of granulosa cells (GCs), the main functional cell type in the ovary, prevents steroid hormone production, which in turn may damage oocytes, resulting in ovarian failure. The accumulation of a number of persistent organic pollutants (POPs) in the ovarian follicular fluid (FF) has been documented, which raises serious questions regarding their impact on female fertility.

Aims: We aimed to determine whether a mixture of POPs reflecting the profile found in FF influences mouse GCs or oocyte function and viability.

Methods: A mixture of POPs, comprising perfluorooctanoate, perfluorooctane sulfonate, 2,2-dichlorodiphenyldichloroethylene, polychlorinated biphenyl 153, and hexachlorobenzene, was used. In addition to using the exact concentration of POPs previously measured in human FF, we tested two other mixtures, one with10-fold lower and another with 10-fold higher concentrations of each POP.

Key Results: Steroidogenesis was disrupted in GCs by the POP mixture, as demonstrated by lower oestradiol and progesterone secretion and greater lipid droplet accumulation. Furthermore, the POP mixture reduced GC viability and increased apoptosis, assessed using caspase-3 activity. The POP mixture significantly increased the number of oocytes that successfully progressed to the second meiotic metaphase and the oocyte reactive oxygen species (ROS) concentration.

Conclusions: Thus, a mixture of POPs that are typically present in human FF has detrimental effects on ovarian function: it reduces the viability of GCs, and increases the oocyte concentrations of ROS.

Implications: These results indicate that chronic exposure to POPs adversely affects female reproductive health.

Download full-text PDF

Source
http://dx.doi.org/10.1071/RD21326DOI Listing

Publication Analysis

Top Keywords

mixture pops
12
pop mixture
12
persistent organic
8
organic pollutants
8
granulosa cells
8
reactive oxygen
8
oxygen species
8
pops
6
mixture
6
pollutants affect
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!