A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The feruloyl esterase from Thermobacillus xylanilyticus shows broad specificity for processing pre-biotic feruloylated xylooligosaccharides at high temperatures. | LitMetric

The feruloyl esterase from Thermobacillus xylanilyticus shows broad specificity for processing pre-biotic feruloylated xylooligosaccharides at high temperatures.

Food Chem

Manchester Institute of Biotechnology (MIB)& School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom; Scotland's Rural College, West Mains Road, King's Buildings, Edinburgh EH9 3JG, United Kingdom. Electronic address:

Published: March 2023

Ferulic acid has antioxidant properties of interest to the food industry and can be released from natural plant fibres using feruloyl esterases. Esterases active at high temperatures are highly desirable but currently underrepresented. Here we report the biochemical characterization of the feruloyl esterase from Thermobacillus xylanilyticus. Specific activity of recombinant Tx-Est1 with ethyl ferulate was 29.2 ± 2.9 U mg, with a catalytic efficiency (K/K) of 393.7 ± 9.8 smM. The temperature and pH optima were 60 °C and 7.5, whereby Tx-Est1 retains 70% activity after 25 h at 40 °C. MALDI-TOF MS revealed Tx-ESTI released ferulic acid from xylooligosaccharides with DP4-DP13, and from DP6-8 containing two ferulic acid groups. HPLC demonstrated ferulic acid release from destarched wheat bran was strongly potentiated by co-incubation with xylanase. These properties, especially the high activity at elevated temperatures, suggest Tx-Est1 can be employed for production of high-value compounds from agricultural waste or during plant polysaccharide saccharification.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2022.134939DOI Listing

Publication Analysis

Top Keywords

ferulic acid
16
feruloyl esterase
8
esterase thermobacillus
8
thermobacillus xylanilyticus
8
high temperatures
8
xylanilyticus broad
4
broad specificity
4
specificity processing
4
processing pre-biotic
4
pre-biotic feruloylated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!