There is a little information about the effect of corn process conditions on the bioactive compounds of tortillas during gastrointestinal digestion. Tortillas elaborated with traditional and extrusion nixtamalization process were subjected to in vitro digestion. Extracts recovered from digestion were employed to determine the changes in phytochemicals, bioaccesibility and antioxidant capacity (DPPH, ABTS and FRAP). Digestion contributed to a greater solubilization of phenolic compounds in raw corn and tortillas, especially in the intestinal phase (311.4-583.2 mg GAE/100 g). With bioaccessibility indexes of 162.83 to 960.7 %. Intestinal phase affected the content of anthocyanins, reaching a lower bioaccessibility value than the found in undigested samples (17.90-29.91 %). Even though the traditional white tortilla showed the highest bioaccessibility values, blue tortilla showed a higher antioxidant activity in different phases of digestion. Both tortillas could function as prebiotic agents in the large intestine. Corn-based products are valuable as part of a healthy diet.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2022.134223 | DOI Listing |
Antioxidants (Basel)
October 2024
Endocrinology and Clinical Nutrition Research Center (IENVA), Faculty of Medicine, University of Valladolid, Av. Ramón y Cajal, 3, 47003 Valladolid, Spain.
Efficient development of effective functional foods and nutraceuticals requires adequate estimation methods of the bioaccessibility of their bioactive compounds. Specially grain-based nutraceuticals and functional ingredients are often enriched in bound/low bioavailable bioactive phytochemicals. The objective of this work was to evaluate the differences in applying static or dynamic digestion models for the estimation of bioaccessibility of antioxidants present in cereal grain-based/fiber-rich ingredients produced using enzymatic hydrolysis and sprouting processes.
View Article and Find Full Text PDFFood Chem
January 2025
Tecnológico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, C.P, 64849 Monterrey, N. L., Mexico; Tecnológico de Monterrey, Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C.P, 64849 Monterrey, N. L., Mexico. Electronic address:
Micronutrient deficiencies are a critical factor in the development of obesity. This work aimed to determine the Se and Zn bioaccessibility on biofortified chickpea flour and evaluate their impact on the antioxidant and anti-inflammatory activities. The greatest increase (235 %) in isoflavones was observed in the ZnSO-treatment compared to the control.
View Article and Find Full Text PDFPlant Foods Hum Nutr
June 2024
Laboratorio de Investigación, Desarrollo e Innovación en Proteínas Alimentarias (LIDiPA), Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) - (CONICET, CICPBA, UNLP, La Plata, 1900, Argentina.
This study focused on studying the bioaccesible phenolic compounds (PCs) from yellow pea flour (F) and protein isolate (I). Total phenolic contents (TPC), PCs composition and antioxidant activities were analysed in ethanol 60% extracts obtained by applying ultrasound assisted extraction (UAE, 15 min/40% amplitude). The preparation of I under alkaline conditions and the elimination of some soluble components at lower pH produced a change of PCs profile and antioxidant activity.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2022
Department of Food Science and Nutrition, Faculty of Farmacy, University of Granada, 18071 Granada, Spain.
Phenolic compounds have become interesting bioactive antioxidant compounds with implications for obesity, cancer and inflammatory gastrointestinal pathologies. As the influence of digestion and gut microbiota on antioxidant behavior is yet to be completely elucidated, and due to limitations associated to in vivo studies, dynamic in vitro gastrointestinal models have been promoted. A systematic review was conducted of different databases (PubMed, Web of Science and Scopus) following PRISMA guidelines to assess different dynamic digestion models and assay protocols used for phenolic compound research regarding bioaccesibility and interaction with colonic microbiota.
View Article and Find Full Text PDFFood Chem
March 2023
Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora (ITSON), Cd. Obregón, Sonora 85000, México.
There is a little information about the effect of corn process conditions on the bioactive compounds of tortillas during gastrointestinal digestion. Tortillas elaborated with traditional and extrusion nixtamalization process were subjected to in vitro digestion. Extracts recovered from digestion were employed to determine the changes in phytochemicals, bioaccesibility and antioxidant capacity (DPPH, ABTS and FRAP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!